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Introduction

Calculus is the branch of mathematics that revolves around derivatives and integrals. It is fundamental in
physics and engineering, and forms the basis of any advanced mathematical curriculum.

We focus on the concept of integrals, which is the inverse of derivatives - covered in last week’s lectures.
We define the Riemann integral, and understand its motivation by approximating the area under a curve
using rectangles. Afterwards, we turn towards calculating integrals in practice, which we then will be able
to exploit in applications.

Lecture 1: Integrals (intuitive)

Just like subtraction is the inverse of addition and division is the inverse of multiplication, taking derivatives
of a function will also have an "inverse operation". This inverse operation is called the integral, and it is
used to calculate the area under a curve.

1.1 The area under a curve

Suppose we have a function f : R → R that is continuous on an interval [a, b]. We want to calculate the
area under the curve of f on this interval, as shown in Figure 1. We can approximate the area under the
curve by using rectangles, as shown in the right part of the same figure. For simplicity, we take the interval
[a, b] to be divided into n equal parts, each of length ∆x = b−a

n . The end points of these intervals are then
x0 = a, x1 = a+∆x, x2 = a+ 2∆x, . . . , xn = a+ n∆x = b. The midpoints of these intervals are then

x1 =
x0 + x1

2
, x2 =

x1 + x2

2
, . . . , xn =

xn−1 + xn

2
.

If we evaluate the function f at these midpoints, we get the values f(x1), f(x2), . . . , f(xn). Summing the
areas of the rectangles, with height f(xi) and width ∆x, we get an approximation of the area under the
curve of f on the interval [a, b]:

An =

n∑
i=1

f(xi)∆x. (1)

This is illustrated in Figure 1, for the interval [0, 4] and n = 7. It should be clear that the more rectangles
we use, the better the approximation of the area under the curve will be. Figure 2 shows the area under the
curve of f on the interval [0, 4], and an approximation of this area using 20 rectangles.
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1.2 The Riemann integral LECTURE 1: INTEGRALS (INTUITIVE)

Figure 1: (left)The area under the curve of f on the interval [0, 4], and (right) an approximation of this area using
7 rectangles. The red crosses indicate the midpoints of the rectangles, at which the function is evaluated.

Figure 2: (left)The area under the curve of f on the interval [0, 4], and (right) an approximation of this area using
20 rectangles. The red crosses indicate the midpoints of the rectangles, at which the function is evaluated.

Indeed, in the limit where n goes to infinity, the approximation of the area under the curve will become
exact.

1.2 The Riemann integral

This is not the most general way to define the Riemann integral, but if we restrict to continuous functions -
as we do - this limit does the trick. We can now define the Riemann integral of a function f on an interval
[a, b].

Definition 1. Let f : R → R be a function that is continuous on an interval [a, b]. We define the
Riemann integral of f on [a, b] as ∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi)∆x, (2)

where ∆x = b−a
n and xi =

xi−1+xi

2 .

Again, bear in mind that this is not the most general definition of the Riemann integral, which can be given

2 Seppe J. Staelens



1.3 The fundamental theorem of calculus LECTURE 1: INTEGRALS (INTUITIVE)

for functions that are not continuous, and uses the concept of partition of an interval and refinement of the
latter.

Example 1. Let f : R → R : x 7→ f(x) = x2. We want to calculate the integral of f on the interval
[0, 4].

Using the definition, we have that ∆x = 4
n and xi =

xi−1+xi

2 = i−1+i
2

4
n = 2(2i−1)

n . Hence, we have that∫ 4

0

x2dx = lim
n→∞

n∑
i=1

f(xi)∆x

= lim
n→∞

n∑
i=1

(
2(2i− 1)

n

)2
4

n

= lim
n→∞

n∑
i=1

16(2i− 1)2

n3

= lim
n→∞

16

n3

n∑
i=1

(
4i2 − 4i+ 1

)
= lim

n→∞

16

n3

(
4
n(n+ 1)(2n+ 1)

6
− 4

n(n+ 1)

2
+ n

)
.

To obtain the last line we used the formulas for the sum of the first n squares and the first n numbers:

n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

We can now simplify the expression to find the integral.∫ 4

0

x2dx = lim
n→∞

16

n3

(
8n3 + 12n2 + 4n− 12n2 − 12n+ 6n

6

)
= lim

n→∞

16

n3

(
8n3 − 2n

6

)
= lim

n→∞

16

6

(
8− 2

n2

)
=

64

3
.

Note that this is equal to 43

3 , which is the more familiar result for people that have studied integrals
before.

1.3 The fundamental theorem of calculus

This section clarifies in what sense the integral is the inverse operation of the derivative. The fundamental
theorem of calculus actually consists of two parts, which we will state here.

Theorem 1. Let f : [a, b] → R be continuous. Define the function F : [a, b] → R as

F (x) =

∫ x

a

f(t)dt. (3)

Then F is differentiable on (a, b), and F ′(x) = f(x) for all x ∈ (a, b).
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1.4 Indefinite integrals LECTURE 1: INTEGRALS (INTUITIVE)

Theorem 2. Let f : R → R be a function that is continuous on an interval [a, b], and let F : R → R
be a function such that F ′(x) = f(x) for all x ∈ (a, b). Then we have that∫ b

a

f(x)dx = F (b)− F (a). (4)

To prove these theorems, we would need a couple more tools, like the mean value theorem and a general
treatment of integrals. A full treatment of these topics should be available in any analysis course at university
level.

1.4 Indefinite integrals

From the linearity of the derivative, it follows that if two functions f, g have the same derivative, i.e. f ′(x) =
g′(x) for all x, then they differ by a constant. Indeed, if f ′(x) = g′(x), then (f − g)′(x) = f ′(x)− g′(x) = 0,
and thus f − g is a constant function. Therefore, we can write that f(x) = g(x) + C for some constant C.

For a given function f , we definite a primitive function F as a function such that F ′(x) = f(x) for all x.
From the above, it thus follows that all primitive functions of f differ by a constant.

This motivates the definition of the indefinite integral of a function f as the set of all primitive functions
of f :

Definition 2. The indefinite integral of a function f : R → R is defined as∫
f(x)dx = {F : F ′(x) = f(x) for all x ∈ R} . (5)

Suppose we know a primitive function F of f , then we can write the indefinite integral as∫
f(x)dx = F (x) + C , (6)

where C ∈ R is an arbitrary constant.

The integral we defined in the previous section is called a definite integral, as it has limits of integration
a, b. Note that the definite integral can be calculated using any primitive function F of f , as the constant
C will cancel out when we calculate F (b)− F (a). Therefore, the definite integral can always be calculated
from the indefinite integral, no matter the primitive function we choose.
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LECTURE 2: CALCULATING INTEGRALS

Lecture 2: Calculating integrals

While the calculation in Example 1 was still tractable, it becomes more cumbersome for more general
functions. In order to avoid this, a series of tools has been developed to calculate integrals of complex
functions from more elementary integrals.

2.1 Elementary integrals

Calculating any integral boils down to reducing it to a sum of elementary integrals. Elementary integrals are
integrals of functions that can be expressed in terms of elementary functions, and they should be considered
basic knowledge. The following list contains some of the most common elementary (indefinite) integrals,
which we will not prove here.

Lemma 1 (Elementary integrals). Let C ∈ R be an arbitrary constant:∫
xn dx =

xn+1

n+ 1
+ C, n ̸= −1,∫

1

x
dx = ln |x|+ C,∫

ex dx = ex + C,∫
axdx =

ax

ln a
+ C, a > 0, a ̸= 1,∫

sinx dx = − cosx+ C,∫
cosx dx = sinx+ C .

2.2 Rules for calculating integrals

The following rules can be used to calculate integrals of more complex functions, and are based on the
properties of the Riemann integral. These rules have counterparts for derivatives, and are often called the
rules of integration.

The first one follows straightforwardly from the linearity of the derivative:

Theorem 3 (Linearity of the integral). Let f, g : R → R be functions, and let a, b ∈ R be constants.
Then we have that ∫

(af(x) + bg(x))dx = a

∫
f(x)dx+ b

∫
g(x)dx. (7)

Example 2. Let f(x) = 2x2 + 3x− 5. Then we find that∫
f(x)dx =

∫
(2x2 + 3x− 5)dx

= 2

∫
x2 dx+ 3

∫
x dx− 5

∫
1 dx

= 2

(
x3

3
+ C1

)
+ 3

(
x2

2
+ C2

)
− 5(x+ C3)

=
2

3
x3 +

3

2
x2 − 5x+ C,
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2.2 Rules for calculating integrals LECTURE 2: CALCULATING INTEGRALS

where C = 2C1 + 3C2 − 5C3 is an arbitrary constant. Note that we can also write this as∫
f(x) dx =

2

3
x3 +

3

2
x2 − 5x+ C, (8)

where C is an arbitrary constant. In the case that linearity is used, we will henceforth immediately
combine the constants into one.

While linearity is straightforward, it is still restricted to functions that can be expressed as a linear
combination of elementary functions. For more complex functions, substitution is often a very powerful
tool. It is intimately related to the chain rule for derivatives, which we repeate here for convenience:

Theorem 4 (Chain rule). Let F : R → R and g : R → R be functions, and let g be differentiable at x.
Then we have that

(F ◦ g)′(x) = F ′(g(x))g′(x). (9)

Theorem 5 (Substitution). Let F : R → R be a function, whose derivative we denote with f , and let
g : R → R be a differentiable function with g′(x) ̸= 0 for all x in the domain of g. Then we have that∫

f(g(x))g′(x)dx =

∫
f(u)du

∣∣∣∣
u=g(x)

, (10)

or equivalently ∫
f(g(x))g′(x)dx = F (g(x)) + C, (11)

It should be noted that for definite integrals, the limits of integration will change when we apply substitution,
i.e. Eq. (10) will become ∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du. (12)

Example 3. Let f(x) = sin2 x cosx, and we want to calculate the integral of f on the interval [0, π
2 ].

We start by calculating the indefinite integral of f :∫
f(x) dx =

∫
sin2 x cosx dx.

We can use substitution here, by letting u = g(x) = sinx. Indeed, note that g′(x) = cosx, which
according to Thm. 5 allows us to write ∫

f(x) dx =

∫
u2du,

where we used that g′(x)dx = du. We can now calculate the integral of u2 by using Lemma 1:∫
f(x) dx =

u3

3
+ C

=
sin3 x

3
+ C ,

where we replaced u by g(x) = sinx in the last step.
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2.2 Rules for calculating integrals LECTURE 2: CALCULATING INTEGRALS

We can now calculate the definite integral of f on the interval [0, π
2 ]:∫ π

2

0

f(x) dx =

∫ π
2

0

sin2 x cosx dx

=

[
sin3 x

3

]π
2

0

=
sin3 π

2

3
− sin3 0

3

=
13

3
− 0

=
1

3
.

Note that we could have also calculated the definite integral directly, by using Eq. (12):∫ π
2

0

f(x) dx =

∫ π
2

0

sin2 x cosx dx

=

∫ sin π
2

sin 0

u2du

=

[
u3

3

]sin π
2

sin 0

=
13

3
− 0

=
1

3
.

The hardest part of this method usually is to find the right substitution, which can be a bit of a trial-
and-error process. Additionally, multiple substitutions could work, although different substitutions could
significantly alter the complexity of the subsequent calculations.

Finally, we look at integration by parts, linked to the product rule for derivatives - which we also repeat here
for convenience:

Theorem 6 (Product rule). Let f, g : R → R be functions, and let f and g be differentiable at x. Then
we have that

(f · g)′(x) = f ′(x)g(x) + f(x)g′(x). (13)

Theorem 7 (Integration by parts). Let f, g : R → R be functions, and let f and g be differentiable at
x. Then we have that ∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x) dx. (14)

Example 4. Let f(x) = x2 and g(x) = ex. We want to calculate the integral of f times the derivative
of g: ∫

f(x)g′(x) dx =

∫
x2ex dx.

We can now apply integration by parts, with f(x) = x2 and g′(x) = ex, which gives us∫
x2ex dx = x2ex −

∫
2xex dx.
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2.2 Rules for calculating integrals LECTURE 2: CALCULATING INTEGRALS

We can now apply integration by parts again, with f(x) = 2x and g′(x) = ex, which gives us∫
x2ex dx = x2ex − (2xex − 2

∫
ex dx)

= x2ex − 2xex + 2ex + C,

where we used Lemma 1 to calculate the last integral.

Again, the hardest part of this method is to find the right functions f, g to apply integration by parts.
Calculating integrals in general is a trial-and-error process, as opposed to taking derivatives, and it requires
a lot of practice and a bit of creativity.

We provide a couple of example integrals that can be calculated using the methods we discussed above.

Exercise 1. Calculate the integrals below. You may need to use multiple methods, as well as the list
of elementary integrals in Lemma 1.

1.
∫
x3 dx.

2.
∫

1
x2 dx.

3.
∫ (

e2x + 4 sinx
)

dx.

4.
∫
(sin(3x) + 3) dx.

5.
∫
cos2(2x) sin(2x) dx.

6.
∫
xe2x dx.

7.
∫
x2 sin(x) dx.

8.
∫

1√
x

dx.

9.
∫

cos x√
sin x

dx.

10.
∫
e3 cos x sinx dx.
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LECTURE 3: APPLICATIONS OF INTEGRALS

Lecture 3: Applications of integrals

In this Lecture, we briefly illustrate the importance of integral calculus in various settings, by applying it to
simple problems.

3.1 Physics: a falling object

Some students may be familiar with Newton’s second law, which states that the force F acting on an object
is equal to the mass m of the object times its acceleration a:

F = ma. (15)

The acceleration a is the derivative of the velocity v with respect to time t, i.e. a = dv
dt . Give that the

velocity v is the derivative of the position x with respect to time, i.e. v = dx
dt , we can rewrite Eq. (15) as

F = m
d2x

dt2
. (16)

This is really an equation relating two vectors, F and x, but for the sake of simplicity we will restrict to
an example in one dimension. Consider an object of mass m, initially at rest at height h above the ground,
and subject to the force of gravity. The gravitational force has a constant magnitude F = mg, and points
towards the ground. Using y(t) to denote the height of the object at time t, we can write Eq. (16) as

−mg = m
d2y

dt2
, (17)

i.e. the gravitational force provides a negative acceleration, pulling the object to the ground. The masses
cancel out (this is the famous result that, in vacuum, all objects fall the same way), and we find that

d2y

dt2
= −g . (18)

Recasting this in terms of the velocity v(t) = dy
dt , we find that

dv
dt

= −g . (19)

Integrating both sides of this equation with respect to t, we find that∫
dv
dt

dt =
∫

−g dt

⇔ v(t) = −gt+ C ,

where we implicitly used the fundamental theorem of calculus, Thm. 2, using that the integral of a derivative
is the original function. The constant C can be understood as being the initial velocity of the object, as
v(0) = C. Given that we assumed that the object is initially at rest, we have that C = 0. Recasting the
equation in terms of the height y(t), we now have that

dy
dt

= −gt . (20)

Integrating both sides of this equation with respect to t again, we find∫
dy
dt

dt =
∫

−gt dt

⇔ y(t) = −1

2
gt2 + C ′ ,

where we again used the fundamental theorem of calculus, Thm. 2, and one of the fundamental integrals in
Lemma 1. Again, the constant C ′ can be understood as being the initial height of the object, as y(0) = C ′.
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3.2 Physics: center of mass LECTURE 3: APPLICATIONS OF INTEGRALS

The initial height is what we denoted by h at the beginning of this section, so we have that C ′ = h. We
thus find that the height of the object at time t is given by

y(t) = −1

2
gt2 + h . (21)

As a consequence, we find that the object will hit the ground when y(t) = 0, i.e. when

0 = −1

2
gt2 + h . (22)

Rearranging this equation, we find that the time it takes for the object to hit the ground is given by t =
√

2h
g ,

irrespective of the mass of the object.

Exercise 2. Assume now that the object is not initially at rest, but has an initial velocity v0 upwards.

1. Calculate the height of the object as a function of time.

2. Calculate the time it takes for the object to hit the ground, as a function of h and v0.

3. Can you explain your result? What happens if v0 is negative, i.e. if the object is thrown
downwards?

4. Can you throw a ball sufficiently hard so that it never hits the ground?a

aNote that this question still assumes that the force of gravity is constant as a function of height, which is not the case
if we consider large height differences. If we would treat the problem in full generality, with the force of gravity decreasing
with height, we would find a different answer to this question.

3.2 Physics: center of mass

A typical problem in physics is to calculate the center of mass of an object. When given a collection of point
particles, the center of mass can be calculated as

Definition 3 (Center of Mass). Given a collection of N point particles with masses m1, . . . ,mN located
at positions r1, . . . , rN , the center of mass R is defined as

R =
1

M

N∑
i=1

miri , (23)

where M =
∑N

i=1 mi is the total mass of the system.

However, for an extended object, this definition does not apply. Suppose we have a cylinder with height h
and base radius r. Suppose additionally that the cylinder is made out of a special material with density ρ(z)
that varies with height z. If we want to calculate the center of mass of this cylinder, we can slice it into N
thin disks of thickness ∆z = h

N , and calculate the mass of each disk as

mi = ρ(zi) ·A ·∆z , (24)

where A = πr2 is the cross-sectional area of the cylinder and zi is the height of the i-th disk. In this case, a
naive translation of our center-of-mass formula will give

R =
1

M

N∑
i=1

mizi , (25)

where we understand zi = ziêz to be the position vector of the i-th disk. Upon substitution of (24), the
z-component of this equation becomes:

Rz =
1

M

N∑
i=1

ρ(zi) ·A ·∆z · zi . (26)
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Similar to how we defined the Riemann integral to be the limit of a Riemann sum, with N going to infinity,
we can now calculate the center of mass as

Rz =
A

M

∫ h

0

ρ(z) · z dz . (27)

Exercise 3. Given a cylinder with height h and base radius r, made out of a material with density
ρ(z) = ρ0

(
1− 0.9 z

h

)
.

1. Describe how the density varies as a function of height. Do you expect the center of mass to be
closer to the top or the bottom of the cylinder?

2. Calculate the height of the center of mass of the cylinder using the formula derived earlier.

3. Using symmetry, what is the center of mass in the x- and y-directions?

4. Using symmetry, what is the height of the center of mass of a cylinder with density ρ(z) =
ρ0

(
0.1 + 0.9 z

h

)
?

Exercise 4. We now extend the calculation above to a sphere whose density varies with the height h.
Suppose the sphere is centered at the origin, and has radius R. We first approximate the sphere as a
stack of thin disks of thickness ∆z.

1. Derive a formula that approximates the radius of a disk at height z (varying between −R and R).

2. Derive a formula for the area of a disk at height z.

3. Derive a formula to approximate the center of mass of the sphere, analogous to (26).

4. Derive from this an exact formula with an integral.

5. Calculate the center of mass of the sphere, for a density ρ(z) = ρ0
(
1− z

R

)
.
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LECTURE 4: DIFFERENTIAL EQUATIONS

Lecture 4: Differential equations

Differential equations (DE) relate functions to their derivative(s). They govern the laws of physics and
model stock markets. Multiple university-level courses can be dedicated to differential equations, and we
obviously won’t have time to cover everything.

We first focus on simple first-order differential equations that can be solved by separation of variables. If
time permits, we will expand to more general first-order differential equations.

4.1 Separation of variables

As a basic example of a DE, consider the following equation for the function f(x):

df
dx

= 2fx . (28)

This equation prescribes the derivative of the function f not only in terms of x, but also in terms of f itself.
Assuming for now that f(x) > 0 for all x ∈ R, we can rewrite Eq. (28) as

1

f

df
dx

= 2x . (29)

Let’s integrate both sides of this equation over x:∫
1

f

df
dx

dx =

∫
2xdx

⇔
∫

1

f
df = x2 + C

⇔ ln f(x) = x2 + C .

We can now exponentiate both sides of this equation to find and expression for the function f(x):

f(x) = Aex
2

, (30)

where we defined A = eC and used the rule for the exponent of a sum, ea+b = eaeb. The method we used is
called separation of variables, and is only applicable because we were able to separate f, x to different signs
of the equality sign in Eq. (29).

Exercise 5. Solve the following first-order differential equations by separation of variables:

1. df
dx = 3fx2.

2. df
dx = −f2.

3. df
dx = 1

f .

4. df
dx = 2f + 3.

5. df
dx = f2x− 2fx+ x.

4.2 Homogeneous ODEs with constant coefficients

We will take a closer look at a special class of differential equations, namely homogeneous ordinary differential
equations (ODEs) with constant coefficients. These equations are of the form
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4.2 Homogeneous ODEs with constant coefficients LECTURE 4: DIFFERENTIAL EQUATIONS

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ . . .+ a1

dy

dx
+ a0y = 0 , (31)

where ai ∈ R are constants, and y = y(x) is the unknown function that we are solving for.

These functions can be solved fairly easily. It can be shown that any solution y(x) can be written as a linear
combination of n linearly independent solutions y1(x), . . . , yn(x), i.e.

y(x) = c1y1(x) + c2y2(x) + . . .+ cnyn(x) , (32)

where c1, c2, . . . , cn are constants determined by the initial or boundary conditions.

To understand what these basis functions are, we start by exploring the Ansatz y(x) = eαx. Since we know
that

dny

dxn
= αneαx = αny(x) ,

substitution into the ODE (31) gives us

anα
neαx + an−1α

n−1eαx + . . .+ a1αe
αx + a0e

αx = 0 .

Factoring out eαx, which is never zero, we find that

anα
n + an−1α

n−1 + . . .+ a1α+ a0 = 0 . (33)

Equation (33) is called the characteristic polynomial of the differential equation. The fundamental theorem
of algebra tells us that this polynomial has n complex roots α1, . . . , αn, counting multiplicities m1, . . . ,mn.
We now investigate the different cases:

1. Real roots with multiplicity 1. For every real root α with multiplicity m = 1, the corresponding
solution is given by

y(x) = eαx . (34)

2. Real roots with multiplicity m > 1. For every real root α with multiplicity m > 1, the
corresponding solutions are given by

yj(x) = xj−1eαx , j = 1, . . . ,m . (35)

3. Complex roots. For every complex root α = β+iγ, we will also have a corresponding root ᾱ = β−iγ
(because the coefficients of the characteristic polynomial (33) are real). The corresponding solutions
are given by

yj(x) = xj−1eβx (Cj cos(γx) +Dj sin(γx)) , j = 1, . . . ,m . (36)

Note that the latter is essentially consequence of Euler’s formula eiθ = cos θ + i sin θ.

Example 5. Consider the ODE

y(5) + y(3) + 2y(2) − 12y + 8 = 0 . (37)

The associated characteristic equation is

α5 + α3 + 2α2 − 12α+ 8 = 0 . (38)

This polynomial has roots α1 = 1 (multiplicity 2), α2 = −2 (multiplicity 1), α3 = 2i (multiplicity 1)
and the corresponding root ᾱ3 = −2i (multiplicity 1). Therefore, the general solution is given by

y(x) = c1e
x + c2xe

x + c3e
−2x + c4 cos 2x+ c5 sin 2x . (39)
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LECTURE 5: PARTIAL FRACTIONS IN INTEGRATION

Lecture 5: Partial fractions in integration

In this section, we briefly revise the method of partial fractions, and illustrate how it can be used to calculate
integrals of rational functions.

Suppose we have an integrand of the form

f(x) =
P (x)

Q(x)
, (40)

where P (x) and Q(x) are polynomials, and the degree of P is less than the degree of Q. If the degree of P
is greater than or equal to the degree of Q, we can first perform the Euclidean division to reduce f(x) to
the form

f(x) = S(x) +
P ′(x)

Q(x)
,

where S(x) is a polynomial and P ′(x) now has degree less than that of Q(x). The polynomial S(x) can be
integrated easily, so we focus on the rational function P ′(x)

Q(x) .

We start by reducing Q(x) to its irreducible factors over the reals, i.e.

Q(x) = (x− r1)
m1(x− r2)

m2 · · · (x2 + a1x+ b1)
n1(x2 + a2x+ b2)

n2 · · · (41)

where we understand all ri, ai, bi ∈ R to be different. The numbers mi and ni are the respective multiplicities
of the linear and irreducible quadratic factors.

The goal now is to express f(x) as a sum of simpler fractions, which can be integrated easily. We proceed
as follows:

1. For every linear factor (x− ri) with multiplicity mi, we add the following terms to the decomposition:

Ai,1

(x− ri)
+

Ai,2

(x− ri)2
+ · · ·+ Ai,mi

(x− ri)mi
.

2. For every irreducible quadratic factor (x2 + aix+ bi) with multiplicity ni, we add the following terms
to the decomposition:

Bi,1x+ Ci,1

(x2 + aix+ bi)
+

Bi,2x+ Ci,2

(x2 + aix+ bi)2
+ · · ·+ Bi,ni

x+ Ci,ni

(x2 + aix+ bi)ni
.

3. By now equating this decomposition to f(x), and multiplying both sides by Q(x), we can find the
coefficients Ai,j , Bi,j , Ci,j by comparing coefficients of powers of x on both sides of the equation.

The different integrals that arise from this decomposition can be calculated using elementary methods,
substitution, and integration by parts. We summarize the different integrals that can arise from this method.

1. Integrals of linear pieces ∫
1

ax+ b
dx =

1

a
ln |ax+ b|+ C

∫
1

(ax+ b)n
dx =

−1

a(n− 1)(ax+ b)n−1
+ C, n > 1

2. Integrals of irreducible quadratic pieces∫
2ax+ b

ax2 + bx+ c
dx = ln |ax2 + bx+ c|+ C

∫
dx

ax2 + bx+ c
=

1√
4ac− b2

arctan

(
2ax+ b√
4ac− b2

)
+ C

14 Seppe J. Staelens



REFERENCES

The latter formula follows from:

ax2 + bx+ c = a
[(
x+ b

2a

)2
+ 4ac−b2

4a2

]
.

Then: ∫
dx

ax2 + bx+ c
=

1√
4ac− b2

arctan

(
2ax+ b√
4ac− b2

)
+ C.

We illustrate this method with an example.

Example 6. Consider the integral

I =

∫
x2 + 3x+ 2

(x+ 1)(x+ 2)(x2 + 9)
dx. (42)

Following the steps outlined above, we decompose the integrand into partial fractions as

x2 + 3x+ 2

(x+ 1)(x+ 2)(x2 + 9)
=

A

x+ 1
+

B

x+ 2
+

Cx+D

x2 + 9

Multiplying both sides with the denominator on the left-hand side, we find that

x2 + 3x+ 2 = A(x+ 2)(x2 + 9) +B(x+ 1)(x2 + 9) + (Cx+D)(x+ 1)(x+ 2)

= (A+B + C)x3 + (2A+B + 3Cx+D)x2 + (9A+ 9B + 2C + 3D)x+ (18A+ 9B + 2D) .

Equating the coefficients of the corresponding powers of x now gives the system of equations
A+B + C = 0

2A+B + 3C +D = 1

9A+ 9B + 2C + 3D = 3

18A+ 9B + 2D = 2

,

which is solved by A = B = C = 0 and D = 1. Therefore,

I =

∫
1

x2 + 9
dx ,

which results in
I =

1

3
arctan

(x
3

)
+ C . (43)

This could have been noted right away by factorizing x2 + 3x+ 2 = (x+ 1)(x+ 2).

References
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