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Introduction

Having become acquainted with the basic concepts of set theory, we will now put additional structure on sets
in the form of a probabilistic measure. This forms the basis of probability theory, a mathematical framework
to discuss situations that are subject to uncertainty. We will start with some formal definitions and study
basic examples, before we discuss Bayes’ rule and apply it to the famous Monty Hall problem.

NB: to avoid having to define a g-algebra, we will only consider finite sample spaces in this course, i.e. sets
with a finite number of elements.

Lecture 1: Definitions

1.1 Probability space

Before we can quantify how likely a certain event is to happen, we need to know what all the possibilities
are. To this end, we define the sample space.

Definition 1. The sample space ) is the set of all possible outcomes of a random experiment. ‘

The prototypical example of a sample space is the set of all possible outcomes of the throw of a die.

Example 1. The sample space of a die throw is Q = {1,2,3,4,5,6}, i.e. the set containing the different
numbers on a die. An event is a subset of ), i.e. a set of outcomes that we are interested in. For
example, the event of throwing an even number is E = {2,4,6}.

The collection of all events of interest is referred to as the event space F, a collection of subsets of 2. Often,
the event space will simply be the power set of €2, i.e. the set of all subsets of 2. While this does not need
to be the case - and sometimes it cannot be the casdl- we will assume this in the rest of the course unless
explicitly stated otherwise.

The question we now want to answer is: what is the probability of a certain event A happening? In the
case or our example above, the probability of throwing an even number can be calculated straightforwardly.

LOur restriction to finite sample spaces means we need not worry about this. Extending the topics here to infinite spaces
requires the introduction of a o-algebra, a topic beyond the scope of this course.
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1.1 Probability space LECTURE 1: DEFINITIONS

Under the assumption that all outcomes are equally likely, we can simply count the number of outcomes
in the event E and divide it by the total number of outcomes in the sample space 2. We will denote the
probability with P(F), and we have that

_#E 3 1

PE)=4a=6" 2

However, this would not have been the case if the die was not fair, i.e. if the outcomes were not equally
likely. In that case, we would need more knowledge about the die to determine the probability of an event.
The probabilities of different events are determined by the probability measure.

Definition 2. A probability measure P : F — [0,1] on a sample space Q is a function from the
event space F to the real numbers, such that

e P(Q) =1, i.e. the probability of the sample space is 1,
e P(A) >0 for all A€ F, i.e. the probability of an event is non-negative,

e P(A1UAs) = P(Ay) + P(Az) for all Ay, Ay € F such that Ay N As = (), i.e. the probability of
the union of two disjoint events is the sum of their probabilities.

Definition 3. A probability space is a triple (2, F, P), where § is the sample space, F is the event
space and P is the probability measure.

We can now tackle the problem of determining probabilities for a loaded die.

( Example 2. Consider a die with the following probabilities for each outcome, where we understand

P(i) = P({i}):
P(1)=1/8, P(2)=1/8, P(3)=1/8,
P(4)=1/8, P(5)=1/8, P(6) = 3/8.
We check that this is a valid probability measure, i.e. the probabilities are non-negative and sum to 1:
P(1)+P(2)+P3)+P4)+P(5)+P6)=1/8+1/8+1/84+1/8+1/8+3/8
< P({1,2,3,4,5,6}) = 1.
We can now calculate the probability of throwing an even number:

P(E) = P({2,4,6})
= P(2) + P(4) + P(6)
—1/8+1/8+3/8

=5/8.

KNote that this is different from the case of a fair die, where we had P(E) =1/2. )
(" Exercise 1. Consider a die with the following probabilities: I
P(1) = 1/16, P(2) = 1/16, P(3) = 1/8,

P(4) =1/8, P(5)=3/8.

1. What does P(6) have to be for this to be a valid probability measure?

2. What is the probability of throwing an even number?

\_ 8. What is the probability of throwing a number that is not a multiple of 37 )
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1.2 Conditional probability

Sometimes, we will be interested in determining a probability after we already know the outcome of another
event. This leads us to the concept of conditional probability.

KExample 3. Consider two people that choose a random number from the set {1,2,3,4}. Alice chooses
a number first, followed by Bob who can not pick the same number as Alice. We will denote the outcome
of their choices as (a,b), where a is Alice’s choice and b is Bob’s choice. The sample space is given by:

1,4
2,4
3,4
4,3

)

oh
3.4) | - (1)
(4,3)

Suppose we now want to know the probability that Bob will pick an even number. If Alice would not be
picking a number, this probability would be % = %, since there are two even numbers (2 and 4) in the

set {1,2,3,4}.

However, suppose that Alice picks 2. In this case, Bob can only pick from the numbers 1, 3, and 4.
Therefore, the probability that Bob picks an even number is now % On the other hand, if Alice picks
8, Bob can only pick from the numbers 1, 2, and 4, and the probability that Bob picks an even number

We will formalize this by defining the conditional probability of an event A given another event B.

Definition 4 (Conditional Probability). The conditional probability of an event A given an event B is
defined as:
P(ANB)

P(A| B) = =Fps

(2)

provided that P(B) > 0.

We can now correctly calculate the conditional probabilities in our example. First, we note that

P(Bob picks an even number N Alice picks 2)
P(Alice picks 2) '

P(Bob picks an even number|Alice picks 2) =

For the numerator, we see from Eq. that the only outcome where Bob picks an even number and Alice
picks 2 is (2,4), so we have

1
P(Bob picks an even number N Alice picks 2) = P((2,4)) = TR

Additionally, on the other hand, we have
. . 1
P(Alice picks 2) = i

Therefore, we now find that

P(Bob picks Alice picks 2) 5 1
P(Bob picks an even number|Alice picks 2) = (Bob picks an eveTl nu@ber N Alice picks 2) =12
P(Alice picks 2) 3

Exercise 2. Prove now yourself that

2
P(Bob picks an even number|Alice picks 3) = 5
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LECTURE 2: BAYES’ RULE

Lecture 2: Bayes’ rule

We start this Lecture by defining the law of total probability, which allows us to calculate the probability
of an event by considering all possible ways that event can occur. To understand its definition, we first need
to define what a partition of the sample space is.

Definition 5 (Partition). A partition of a sample space §2 is a collection of disjoint events Ay, Aa, ..., Ay,
such that

e AiNA; =0 for all i # j (the events are disjoint), and

° U?:l A; = Q (the events cover the entire sample space).

This can most easily be visualized as follows:

Figure 1: The sets A1, Ao,...,As form a partition of the sample space 2. The set B is an arbitrary event in the
sample space, and overlaps with some of the A;. (Figure taken from "Kansrekenen 1" - see References.)

We are now ready to understand the law of total probability.

Theorem 1 (Law of Total Probability). Let A1, Aa, ..., A, be a partition of the sample space Q. Then,
for any event B C Q, we have

n n

P(B) =) P(BNA) =) P(B|4;)P(A). (3)

i=1 i=1

The law of total probability will turn out to be particularly useful in combination with Bayes’ rule, which
follows from the following observation: the definition of conditional probability (Def.d)) tells us that

P(ANB) = P(A|B)P(B),
P(ANB) = P(B|A)P(A).

However, since for any sets A, B we have that AN B = BN A, it must follow that

P(A|B)P(B) = P(B|A)P(A).

Rewriting the above is widely known as Bayes’ theorem.

Theorem 2 (Bayes’ Theorem). Let A and B be two events with P(B) > 0. Then, we have

P(B|A)P(A)

PAIB) = =5 5

(4)
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LECTURE 2: BAYES’ RULE

Bayes’ theorem thus allows us to rewrite the conditional probability P(A|B) in terms of the reverse conditional
probability P(B|A) and the marginal probabilities P(A) and P(B). This simple formula has inspired an
entire new way of doing statistics, known as Bayesian statistics.

Exercise 3. Using the law of total probability, and assuming the existence of a partition Ay, As, ..., A,
of Q, prove that Bayes’ theorem can be written as
P(B|A:;)P(A:)

P(A;|B) = >0 P(BlA;)P(4;) ’

for everyi=1,2,... n.

The best way to understand all of the above definitions is through an example.

fExample 4 (Disease testing). Suppose there exists some kind of tropical disease, which affects 1 in
a 1,000 people. It is known that people with this disease have a very high probability of developing an
ear infection, say 90%. However, healthy people without the disease can also develop an ear infection,
indistinguishable from the one caused by the disease, with a probability of 0.5% - very unlikely.

The question we now want to answer is: if a person arrives at the doctor with such an ear infection,
what is the probability that they actually have the disease? We will calculate this with Bayes’ theorem.

Denote with D the event that a person has the disease, and with H the event that a person is healthy.
Denote with E the event that a person has an ear infection. The probability we want to calculate is
P(DI|E), the probability that a person has the disease given that they have an ear infection. Using
Bayes’ theorem, we can write this as

P(E|D)P(D)

P(DIE) = =5

Using the law of total probability, we can now calculate P(E) as follows:
P(E)=P(E|D)P(D)+ P(E|H)P(H).

Note that this works because a person either has the disease (D) or does not (H ). Using the information
given in the problem, we can now calculate the different probabilities:

1 999
P(D) = 500" P(H) =1~ P(D) = 1500
P(E|D)=0.9, P(E|H) = 0.005.
Therefore, we find that
1 999
P(E)=0.9- —— +0.005 - ——
(E) 1000 + 1000
~ 5.895
~ 1000

We can now plug this into Bayes’ theorem to find the probability we are looking for:

P(E|D)P(D)
P(E)

5.895
1000

09
"~ 5.895
~ 0.15.

P(D|E) =

Therefore, we find that the probability that a person has the disease given that they have an ear infection
Kis approzimately 15%. D
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2.1 The Monty Hall problem LECTURE 2: BAYES’ RULE

2.1 The Monty Hall problem

Monty Hall is a famous game show host, who would ask contestants to choose one of three doors. One of
the doors would hide a car, while the other two would hide goats. Clearly, the goal of the contestants is to
guess the door that has the car behind it.

Monty would first ask the contestant to choose a door, say door 1. Then, he would open one of the other
two doors, say door 3, always revealing a goat. He would then ask the contestant if they want to switch
their choice to the other unopened door, door 2 in this case. The contestant can decide to stick with their
initial guess, door 1, or switch to door 2. Monty then opens the door corresponding to the final choice,
revealing either the car or a goat. While it may seem that the contestant has a 50% chance of winning the
car regardless of whether they switch or not, this is not the case. To understand this, we will employ Bayes’
theorem.

Without loss of generality, we can assume that the contestant initially chooses door 1. Additionally, we can
then also assume that Monty opens door 3, revealing a goat. We want to calculate the probability that door
2 contains the car (D3), given that Monty opened door 3 (O3). Using Bayes’ theorem , we can write this
as

P(Os|D3)P (D)

P(D2|OS) = P(Og)

In principle, the car could initially be behind any door, such that P(D;) = P(D;) = P(D3) = . The
probability that Monty opens door 3 given that the car is behind door 2 is P(O3|D2) = 1: indeed, Monty
will not open door 1 (as that is the current choice of the contestant) and he will not open door 2 (as that is
where the car is). All that is left to calculate is P(Os3).

To do this, we use the Law of Total Probability (Thm. .

P(03) = P(O3|D1)P(D1) + P(O3]D2) P(D2) + P(O3]D3) P(D3)
1 1

3 3’

where we already replaced P(D;), P(D3), and P(Ds3) with their respective values, as well as P(O3|D3) -
which we determined earlier. Notice that P(O3|D3) = 0: if the car is behind door 3, Monty cannot open

it. On the other hand, if the car is behind door 1, Monty can open either door 2 or door 3, such that
P(Os3|D1) = %. Therefore, we find that

1
= P(O3|Dn) - §+1' + P(O3|Ds) -

11 1 1 1
PO3)==--=-4+1-=40-=-=—
(Os) =5 3+1-3+0-3=5

This allows us to calculate that
P(O3|Dy)P(Dy)
P(D5|03) = ——————=~
( 2‘ 3) P(Og)
1%
-1
2
_2
=3

Therefore, we find that the probability that the car is behind door 2, given that Monty opened door 3, is %

Exercise 4. Show that the probability that the car is behind door 1, given that Monty opened door 3, is

P(Dij0s) = TP 2

With the result of the exercise above, we can now conclude that the contestant should always switch
their choice, as this will increase their chances of winning the car from % to %
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2.1 The Monty Hall problem LECTURE 2: BAYES’ RULE

Exercise 5. Assume the same set-up, but now instead of three doors, there are N doors, with N > 3.

1. Show that the probability that the contestant wins the car by switching their choice is %%

2. Suppose now additionally that Monty opens p doors with goats, with 1 < p < N — 2. Show that

the probability that the contestant wins the car by switching their choice s % Njf;il.
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Lecture 3: Stochastic variables

In case there is time left on day 5.

References

These notes are based on my own knowledge of these basic mathematical concepts, and the writing has been
accelerated by the use of GitHub copilot and its implementation in VSCode. Inspiration has been taken
from the course notes for "Kansrekenen I" (Probabilistic calculus), used in the first year of the Bachelor of
Mathematics at the KU Leuven: Prof. Tim Verdonck is the author of the lecture notes.
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