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Introduction

Having studied sets and functions between them in the previous topic, we now move on to the topic of
algebra. Algebra is the branch of mathematics that studies the structure of sets, and in particular the
operations that can be defined on them. The most basic structure we will study is that of a group, which is
a set equipped with an operation that satisfies certain properties. We discuss what an isomorphism is, and
use this to show how some groups are in fact the same.

We will then move on to vector spaces, which are sets equipped with two operations, and study the concept
of linear transformations between them. Afterwards, we will introduce the concept of matrices, which are
ubiquitous in mathematics and physics. They can be used to solve systems of linear equations, and can be
used to represent linear transformations between vector spaces. Finally, we bring together some of these
concepts when we discuss the Google PageRank algorithm, which is based on the concept of eigenvectors of
matrices.

1 Lecture 1: Groups

A group (G, ◦) is a set G on which we define an operation ◦ that maps two elements of the group to
another element in the same group. In mathematical notation this is written as

◦ : G×G→ G : (g, h) 7→ g ◦ h (1)

The group has to satisfy the following:

1. There must exist a neutral element of the group, which will here be indicated with e (or more
specifically eG), which satisfies: ∀g ∈ G : g ◦ e = e ◦ g = g.

2. The operation ◦ must be associative: ∀f, g, h ∈ G : f ◦ (g ◦ h) = (f ◦ g) ◦ h.

3. For each element g ∈ G, there must exist an inverse element h such that g ◦ h = h ◦ g = e.

Sometimes the group operation is written as +, in which case the neutral element is often denoted as 0.
This is called the additive notation. Alternatively, the group operation can be written as ·, in which case
the neutral element is often denoted as 1. This is called the multiplicative notation.

Proposition 1. The neutral element of a group is necessarily unique.
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Proof. Suppose the group (G, ◦) has two neutral elements for the operation ◦, eA and eB . By definition of
the neutral element, we then must have the following sequence of equalities:

eA = eA ◦ eB = eB .

So, we find that the two neutral elements must be in fact the same element, which is therefore unique.

Similarly, we find that the inverse of an element is also unique.

Proposition 2. The inverse of an element in a group is unique.

Proof. The proof is left as an exercise to the reader.

The inverse of an element g is often denoted as g−1 or −g in the multiplicative and additive notation,
respectively.

Exercise 1. Let (G, ◦) be a group. Show that ∀g, h ∈ G we have (g◦h)−1 = h−1 ◦g−1 and (g−1)−1 = g.

Definition 1. An Abelian group is a group for which the operation is commutative, i.e.

∀g, h ∈ G : g ◦ h = h ◦ g .

1.1 Examples

This section discusses some examples of well-known groups.

• (N,+), (Q,+), (R,+), (C,+) are all Abelian groups with neutral element 0.

• (R0, ·) is an Abelian group with neutral element 1.

• The real matrices form an Abelian group with respect to the addition (Rm×n,+).

• The real matrices do not form a group with respect to the multiplication (Rm×n, ·). Why? Instead,
the square invertible matrices form a group with respect to the multiplication. This group is denoted
as (GL(n,R), ·).

• The linear functions with f(x) = ax + b, a ̸= 0, form a group with respect to the composition of
functions.

• The cyclic group (Zn,+) is a group with n elements that contains a neutral element e and a generator
a, which generates all the other elements as a + a, a + a + a, . . . , i.e. by repeatedly adding a to
itself. Denoting these elements as e, a1 ≡ a, a2 ≡ a + a, . . . , an−1 ≡ a + a + · · · + a, we finally have
that an−1 + a = e. Often, the elements of this group are denoted {0, 1, 2, 3, . . . , n − 1}, and then the
operation is the regular addition modulo n. We will come back to this concept, but for now it is enough
to remember that (n− 1) + 1 ≡ 0.

• The Klein four-group (V,⊕) is a group with four elements, defined by the following Cayley table:

⊕ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

This table should be read as e.g.

⊕ b
a a⊕ b

This group can be thought of as the symmetry group of a non-square rectangle, as discussed in the
lecture.
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1.2 Isomorphisms

It is possible to construct larger groups from known smaller groups. A way to do this is by means of the
direct product.

Definition 2. The direct product of two groups (G, ◦) and (H, ⋆) is the group (G×H,□), containing
elements (g, h) with g ∈ G, h ∈ H .The operation □ is defined as

(g1, h1)□(g2, h2) = (g1 ◦ g2, h1 ⋆ h2) . (2)

However, this does not always mean we are making a "new group". Consider the Cayley table of Z2 × Z2,
both equipped with the regular addition. This table is given by

+ (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

Comparing this to the Cayley table of the Klein four-group, we see that these have the same structure. This
means that, in a way, these groups are the same, we just gave the elements different names. To make this
more precise, we introduce the concept of an isomorphism.

Definition 3. Let (G, ◦) and (H, ⋆) be two groups. A homomorphism from G to H is a map ϕ : G→ H
that satisfies

∀g1, g2 ∈ G : ϕ(g1 ◦ g2) = ϕ(g1) ⋆ ϕ(g2) . (3)

An isomorphism is a homomorphism that is also bijective. In this case, the groups are said to be
isomorphic, and we write G ∼= H.

Note that in equation (3) the operation ⋆ is used for the objects ϕ(g1) and ϕ(g2), as by definition they are
elements of H.

Exercise 2. Given the Cayley tables of (V,⊕) and (Z2 × Z2,+), show that these groups are the same
by giving an explicit isomorphism between them.

Theorem 1. Given groups (G, ◦) and (H, ⋆) and a homomorphism ϕ : G → H. Denoting the neutral
elements with eG, eH respectively, we have that

1. ϕ(eG) = eH ,

2. ϕ(g−1) = ϕ(g)−1.

Furthermore, if ϕ is an isomorphism, then the inverse map ϕ−1 : H → G is also an isomorphism.

Proof. The proof is left as an exercise to the reader.

1.3 Subgroups
Definition 4. A subset H of a group G is called a subgroup if it is itself a group with respect to the
operation of G.
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Exercise 3. Show that the set of even integers is a subgroup of the group of integers with respect to
addition. Is the set of odd integers also a subgroup?

Exercise 4. Determine all subgroups of the cyclic group of order 12, Z12.

Proposition 3. Given two groups (G, ◦) and (H, ⋆), and a homomorphism ϕ : G → H. Given any
subgroup K of G, the image of K under ϕ is a subgroup of H.

Proof. We have to show that ϕ(K) is a subgroup of H, i.e. we have to show that it is a group. Since K is
a group, eG ∈ K, and therefore eH = ϕ(eG) ∈ ϕ(K). Associativity of the operation ⋆ is inherited from the
fact that H is a group. The set ϕ(K) is closed under the operation ⋆ as well: given any two elements of
ϕ(K), say ϕ(k1) and ϕ(k2), we have that ϕ(k1) ⋆ ϕ(k2) = ϕ(k1 ◦ k2) ∈ ϕ(K). Finally, we need to check that
every element of ϕ(K) has an inverse in ϕ(K). Given an element ϕ(k) ∈ ϕ(K), we have that ϕ(k−1) ∈ ϕ(K),
as k−1 ∈ K since K is a group. Therefore, ϕ(K) is a subgroup of H.

Exercise 5. Are the following groups isomorphic to Z6?

• Z2 × Z3

• Z3 × Z2

• S3. This is the group of symmetries of an equilateral triangle. The elements of the groups are the
reflections (around the axes of symmetry) and the rotations (by 120◦ and 240◦). Start by listing
and labelling these basic elements, and form the Cayley table.

4



2 Lecture 2: Linear algebra

Having studied groups, we will now impose additional structure on sets to turn them into vector spaces.
This is one of the central concepts in the field of linear algebra, which in itself forms the basis of any scientific
/ engineering degree.

Definition 5. A real vector space is an Abelian group (V,+) that is furthermore equipped with a
scalar multiplication

· : R× V → V : (λ, v) 7→ λ · v . (4)

If the distinction between the scalars and group elements is clear, we will often simply denote λ · v as
λv. The two operations have to satisfy the following properties ∀v, w ∈ V, λ, µ ∈ R:

1. Identity element for scalar multiplication: 1v = v for all v ∈ V .

2. Distributivity w.r.t. the scalar multiplication: λ · (v + w) = λv + λw.

3. Distributivity w.r.t. the vector addition: (λ+ µ)v = λv + µv.

4. Compatibility of scalar multiplication with field multiplication: (λµ)v = λ(µv).

2.1 Examples

Some basic examples include:

• The set of real numbers R is a vector space with respect to the regular addition and multiplication.

• The set of real matrices Rm×n is a vector space with respect to the regular matrix addition and scalar
multiplication.

• The set of real functions F(R,R) (i.e. functions f : R → R) is a vector space with respect to the
regular function addition and scalar multiplication, defined for all functions f, g ∈ F(R,R) and λ ∈ R
as

(f + g)(x) = f(x) + g(x) , (λf)(x) = λf(x) .

• In quantum mechanics, wave functions |ψ⟩ are elements of a Hilbert space, which is a vector space with
more structure added onto it. They can be added together and multiplied by complex numbers, as for
example in the famous example of Schrödinger’s cat who is "alive and dead" with wave function

|ψ⟩ = 1√
2
(|alive⟩+ |dead⟩) .

2.2 Linear transformations

Much like we had homomorphisms between groups, we can define linear transformations between vector
spaces.

Definition 6. A linear transformation from a vector space V to a vector space W is a map L :
V →W that satisfies the following:

∀λ, µ ∈ R,∀v, w ∈ V : L(λv + µw) = λL(v) + µL(w) . (5)

Exercise 6. Show that the composition of two linear transformations is again a linear transformation.
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Theorem 2. If L : V →W is a linear transformation, then the following statements are true:

1. L(0V ) = 0W .

2. L(−v) = −L(v).

Proof. The first statement follows from the linearity of L:

L(0V ) = L(0V + 0V ) = L(0V ) + L(0V ) ⇒ L(0V ) = 0W .

The second statement follows from the first, as

0W = L(0V ) = L(v + (−v)) = L(v) + L(−v) ⇒ L(−v) = −L(v) .

Exercise 7. Show that the set of all linear transformations from a vector space V to itself forms a
vector space under the regular addition and scalar multiplication of functions. This vector space is
denoted as L(V ).

2.3 Bases of vector spaces

It turns out that vector spaces have a well defined structure, which can be described by a basis. We first
need to define the concepts of linear independence and span.

Definition 7. A set of vectors {v1, . . . , vN} is called linearly independent if the only way to write
the zero vector as a linear combination of these vectors is by setting all the coefficients to zero, i.e.

N∑
i=1

λivi = 0 ⇒ ∀1 ≤ i ≤ N : λi = 0 . (6)

If a set of vectors is not linearly independent, it is called linearly dependent.

For example, the vectors (1, 0), (0, 1) ∈ R2 are linearly independent, as the only way to write the zero vector
(0, 0) as a linear combination of these vectors is by setting both coefficients to zero. However, the vectors
(1, 0), (2, 0) are not linearly independent, as the zero vector can be written as 1 · (2, 0)+ (−2) · (1, 0) = (0, 0).

Definition 8. The span of a set of vectors {v1, . . . , vN} is the set of all possible linear combinations
of these vectors, i.e.

span{v1, . . . , vN} =

{
N∑
i=1

λivi | λi ∈ R

}
. (7)

For example, in R3, the span of the vectors (1, 0, 0), (0, 1, 0) is the xy-plane, as any vector in the xy-plane
can be written as a linear combination of these two vectors:

(x, y, 0) = x · (1, 0, 0) + y · (0, 1, 0) .

Exercise 8. Show that the span of a set of vectors is a vector space.

Definition 9. A set of vectors {e1, . . . , eN} is called a basis of a vector space V if they are linearly
independent and span V .

Such a basis is in general not unique. However, it turns out that the number of basis vectors is fixed for
a given vector space. Once a basis is chosen, any vector in the vector space can be written as a linear
combination of the basis vectors, and this representation is unique.
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Theorem 3. Given a basis {e1, . . . , eN} of a vector space V , any vector v ∈ V can be written as

v =

N∑
i=1

viei (8)

in a unique way.

Proof. Suppose that v can be written in two ways, i.e.

v =

N∑
i=1

viei ,

v =

N∑
i=1

wiei .

Subtracting the two expressions, we find that

0 =

N∑
i=1

(vi − wi)ei .

Since the basis vectors are linearly independent, we must have that vi − wi = 0 for all i.

The proof of the following theorem would take us too far, but forms a cornerstone of the field of linear
algebra.

Theorem 4. Every vector space V admits a basis. The dimension of a vector space V is the number
of basis vectors in any basis of V . This number is denoted as dim(V ). If the dimension is finite, we
say that the vector space is finite-dimensional.

The following theorem is a direct consequence of the definition of a basis.

Theorem 5. A linear transformation L : V → W is completely determined by its action on the basis
vectors.

Proof. Take a basis of the N -dimensional vector space V , {e1, . . . , eN}. Then any vector v ∈ V can be
written as v =

∑N
i=1 v

iei. The linear transformation acting on v then satisfies

L(v) =

N∑
i=1

viL(ei)

Therefore, once the linear transformation of the basis vectors is known, it is known for all the vectors.

We can also create linear maps between different vector spaces.

Theorem 6. Any vector space V is isomorphic to RN for N = dim(V ).

Proof. Take a basis of V , {e1, . . . , eN}. Then any vector v ∈ V can be written as v =
∑N

i=1 v
iei. The map

ϕ : V → RN that sends v to the vector (v1, . . . , vN ) is an isomorphism. This means we implicitly take the
standard basis of RN , which is the set of vectors (1, 0, 0, . . . ), (0, 1, 0, . . . ), . . . .
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3 Lecture 3: Matrices

Normally you are already familiar with vectors in Rn. These consist of an ordered collection of n real
numbers, and we usually denote these vectors as

x =


x1
x2
. . .
xn

 . (9)

Matrices are similar, but add a dimension. A m× n matrix is a collection of m · n real numbers, ordered in
m rows and n columns. Such a matrix looks like

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



The set of these matrices is denoted by Rm×n. The diagonal of a matrix is the collection of elements aii,
i.e. the elements with the same row and column index. Matrices for which the only non-zero elements are
found on the diagonal are called diagonal matrices.

3.1 Matrix operations

The addition of matrices is fairly straigthforward. Addition between matrices is only well-defined between
matrices of the same shape. The resulting matrix is simply obtained by adding the elements in the
corresponding positions. For example, the addition of two 2× 3 matrices A,B is

A+B =

(
a11 a12 a13
a21 a22 a23

)
+

(
b11 b12 b13
b21 b22 b23

)
=

(
a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23

)
.

Note that we can write this more compactly using element notation. Let’s define the matric C = A + B,
then we say that the element

cij = aij + bij , ∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n .

In this notation, cij refers to the element on row i and column j of the matrix C.

The multiplication of matrices is less straigthforward. Even though an elementwise multiplication seems
straigthforward, this turns out to not be very interesting. Instead, for many applications the matrix
multiplication, defined as below, is way more useful.

The product of two matrices is not always well-defined, but allows for matrices of different types. First of all,
it should be noted that the multiplication of matrices is not commutative. The product of A with B is only
well-defined if the number of columns in A matches the number of rows in B. For example, A ∈ R2×3 and
B ∈ R3×1 can be multiplied, but A and C ∈ R2×1 cannot. If we write C = A×B with A ∈ Rm×n, B ∈ Rn×l,
then the elements of C ∈ Rm×l are given by

cij =

n∑
k=1

aikbkj (10)

Example 1. Consider two matrices

A =

(
1 0 3
0 2 4

)
, B =

2 0
1 1
3 1

 .
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Note that A ∈ R2×3, B ∈ R3×2, and therefore we should have C ≡ A ·B ∈ R2×2. We calculate that

C = A ·B(
1 · 2 + 0 · 1 + 3 · 3 1 · 0 + 0 · 1 + 3 · 1
0 · 2 + 2 · 1 + 4 · 3 0 · 0 + 2 · 1 + 4 · 1

)
=

(
11 3
14 6

)
Alternatively, we can also calculate D ≡ B ·A ∈ R3×3. This is a different matrix indeed:

D = B ·A

=

(
2 · 1 + 0 · 0 2 · 0 + 0 · 2 2 · 3 + 0 · 4

...
...

...

)

=

2 0 6
1 2 7
3 2 13



Two special types of matrices are the unit matrix 1n and the zero-matrix 0n. The first one has zeroes
everywhere, except for the diagonal, i.e. the elements with the same row and column index. The latter has
zeroes everywhere. The n denotes the dimensions, as these matrices are square, i.e. elements of Rn×n. If
the dimension is clear, these matrices are often simply denoted as 1, 0 respectively.

Exercise 9. Check that for all A ∈ Rn×n the following holds:

1. A · 1 = 1 ·A = A

2. A · 0 = 0 ·A = 0

Another basic matrix operation is the transposition of a matrix. This is simply the operation of flipping the
matrix over its diagonal. The element aij at position (i, j) is then placed at position (j, i) in the transposed
matrix. This operation is denoted as AT . It should be clear that if A ∈ Rm×n, then AT ∈ Rn×m.

Example 2. The transpose of the matrix A =

(
1 2 3
4 5 6

)
is AT =

1 4
2 5
3 6

.

Exercise 10. Show that for all A,B ∈ Rm×n the following holds:

1. (AT )T = A

2. (A+B)T = AT +BT

3. (λA)T = λAT

4. (A ·B)T = BT ·AT

Matrices for which the transpose is equal to the original matrix are called symmetric. Matrices for which
the transpose is equal to the negative of the original matrix are called antisymmetric.

3.1.1 Inversion and determinant

Given that we have addition and multiplication for matrices, one might wonder whether the inverse operations
also exist. Subtraction of matrices is straigthforward: if we have a matrix A, we can define −A as the matrix
where every element of A gets a minus sign. With this definition, A−B can simply be interpreted as A+(−B).
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Does division also work for matrices? Given that multiplication is defined in a way that is not element-
wise, division isn’t either. The defining property for division of real numbers is that it is the inverse of
multiplication, i.e. a

b = c⇔ a = b · c. Because of this property, as you should be well aware, division by 0 is
not allowed. So in similar spirit, we would like to define division of matrices as an operation such that

A

B
:= C ⇔ A = B · C

However, a couple subtleties arise here:

• First of all, we have to remember that the multiplication of matrices is not commutative. Therefore,
the definition above is not equivalent to A

B := C ⇔ A = C · B. It seems like we need two kinds of
divisions.

• Do we have a problem with matrix division analogous to division by zero?

In this course we will not go into the details of this problem, as there is a lot to be said about it. We simply
summarize the main points:

1. For matrices, "division" is replaced by "inversion". Instead of dividing by a matrix A, we multiply
with the inverse matrix A−1.

2. The inverse matrix satisfies A ·A−1 = 1 = A−1 ·A.

3. Not all matrices have a well-defined inverse. Inverse matrices are only defined for square matrices,
and within this subset only those that are invertible. Inversion is restricted to square matrices such
that the left and right inverse are the same matrix. Square matrices are invertible if and only if their
determinant is non-zero.

The determinant of a matrix is a scalar value that is calculated from the elements of the matrix. It is
denoted as det(A) or |A|. Matrices that have determinant equal to zero are said to be singular, and do not
have an inverse. This is the matrix equivalent of not being able to divide by zero.

We will not go into the details of how to calculate the determinant of a general matrix, but will give the
formula for a 2× 2 and 3x3matrix matrix.

For a 2× 2 matrix A =

(
a b
c d

)
, the determinant is given by

det(A) = ad− bc . (11)

For a 3× 3 matrix A =

a b c
d e f
g h i

, the determinant is given by

det(A) = aei+ bfg + cdh− ceg − bdi− afh . (12)

This can be graphically remembered as the sum of the products of the elements along the diagonals, minus
the sum of the products of the elements along the anti-diagonals, as illustrated in Figure 1. To illustrate
how determinants of larger matrices are calculated, note that (12) can be rewritten as

det(A) = adet

(
e f
h i

)
− bdet

(
d f
g i

)
+ cdet

(
d e
g h

)
. (13)

This illustrates how the determinant of a 3× 3 matrix can be calculated by taking the determinants of the
2× 2 matrices that are formed by removing one row and one column.
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Figure 1: The graphical representation of the determinant of a 3× 3 matrix.

3.2 Linear transformations as matrices

We already mentioned how essentially every vector space is isomorphic to Rn for some n. When we choose
a basis {e1, . . . , en} for V , where n is thus the dimension of V , we can write any vector v ∈ V as v =∑n

i=1 v
iei. We then define the linear transformation Le : V → Rn defined by mapping e1 to (1, 0, . . . , 0), e2

to (0, 1, 0, . . . , 0), and so on. This means that Le(v) = (v1, v2, . . . , vn) by linearity. Therefore, we can view
any vector v in V as an n-dimensional vector in Rn that contains its coefficients in the basis {e1, . . . , en}.

However, this basis of V is not unique (nor is the standard basis of Rn). Therefore, the linear transformation
L is not unique either. With respect to a different basis {f1, . . . , fn} of V , the vector v ∈ V would have
different coefficients νi. The new linear transformation, which we will specify as Lf , would then map v to
(ν1, ν2, . . . , νn).

We can wonder what the relation is between the coefficients of v in the basis {e1, . . . , en} and the coefficients
of v in the basis {f1, . . . , fn}. Take the basis vector f1. Since it is a vector in V , we can write it as
f1 =

∑n
i=1 f

i
1ei with f i1 ∈ R. This is possible with any of the basis vectors in f . Observe now the following:

v =

n∑
i=1

νifi

=

n∑
i=1

νi

 n∑
j=1

f ji ej


=

n∑
i=1

n∑
j=1

νif ji ej

=

n∑
j=1

(
n∑

i=1

νif ji

)
ej .

The coefficients of v in the basis {e1, . . . , en} are thus given by
∑n

i=1 ν
if ji . But, we already defined these to

be vj . Therefore, we have that vi =
∑n

j=1 ν
jf ij .

We can rewrite this in matrix form as
v1

v2

...
vn

 =


f11 f12 . . . f1n
f21 f22 . . . f2n
...

...
. . .

...
fn1 fn2 . . . fnn



ν1

ν2

...
νn

 . (14)

Alternatively, in matrix notation, we can write this as

v = Fν . (15)

What we are actually doing here, is defining a linear transformation F on V , defined by mapping the basis
{f1, . . . , fn} to the basis {e1, . . . , en}. Indeed, the vector ν = (1, 0, . . . , 0), representing the vector f1, is
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mapped to the first column of F , which is (f11 , f
2
1 , . . . , f

n
1 ). These are exactly the coordinates of f1 in the

basis {e1, . . . , en}.

This illustrates how linear transformations can be represented by matrices. The matrix F represents the
linear transformation F : V → V that maps the basis {f1, . . . , fn} to the basis {e1, . . . , en}.

3.3 Eigenvectors and Eigenvalues

In this section we discuss a more advanced topic in linear algebra. It combines knowledge of our previous
discussions of matrices and linear transformations. For a moment, we forget about abstract vector spaces
and focus on Rn. Given a matrix A, we are interested in vectors that are mapped to a scalar multiple of
themselves by the matrix A, i.e. vectors that satisfy

Av = λv . (16)

Definition 10. A vector v is called an Eigenvectora of a matrix A if it satisfies the equation Av = λv
for some scalar λ. The scalar λ is called the Eigenvalue of the eigenvector v.

aThe reason that these are written with a capital letter originates from German, where nouns are written with capital
letters. Eigen is German for own, or proper. In practice, the capital letter is often omitted, however, as I will do as well.

Equations of the form (16) often appear in physics and engineering, and are therefore thoroughly studied.
The collection of eigenvalues of a matrix is called the spectrum of the matrix.

The paragraph below is rather advanced, but included for background information. The eigenvectors and
eigenvalues of a matrix can be found by solving the equation Av = λv. This equation can be rewritten as
(A−λ1)v = 0. This equation has non-trivial solutions if and only if the matrix A−λ1 is singular, i.e. has a
determinant of 0. Therefore, the eigenvalues of a matrix are the solutions to the equation det(A− λ1) = 0.
The fundamental theorem of algebra states that a polynomial of degree n has n complex roots, counting
multiplicities, meaning that a matrix has n complex eigenvalues, counting multiplicities. Usually, however,
we are interested in the real eigenvalues. A corollary of the fundamental theorem of algebra is that any real
matrix of odd dimension must have at least one real eigenvalue.
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4 Lecture 4: PageRank

4.1 A brief history of PageRank

//Generated by ChatGPT// PageRank, developed by Larry Page and Sergey Brin at Stanford University
in 1996, is a foundational algorithm that significantly influenced the development of web search engines. It
was designed to rank web pages in search engine results by measuring the importance of each page. The
key idea behind PageRank is that a page’s significance can be inferred from the number and quality of links
pointing to it. Essentially, a page linked to by many high-ranking pages receives a higher rank itself. Page
and Brin’s approach provided a novel way of leveraging the web’s link structure to improve search accuracy,
which was a major advancement over the keyword-based search algorithms prevalent at the time.

The algorithm became the core of Google’s search engine, which Page and Brin co-founded in 1998.
PageRank’s ability to deliver more relevant and reliable search results quickly propelled Google to the
forefront of the search engine market. The success of Google demonstrated the practical value of PageRank
and influenced the development of other link-based ranking algorithms. Over time, while Google’s ranking
algorithms have become far more complex and incorporate hundreds of factors, PageRank’s basic principle
of link-based importance remains a cornerstone of modern search engine optimization (SEO) and digital
marketing strategies.

4.2 The mathematics of PageRank

The basic idea, as stated above, is that the importance of a page can be inferred from the number and
quality of links pointing to it. We want to capture this in a number, the rank of a webpage, which is a real
number between 0 and 1. Suppose our internet consists of N webpages, and we denote the rank of webpage
i as ri. We require that all the ranks sum to 1, i.e.

∑N
i=1 ri = 1. We now store all these ranks in a vector

r ∈ RN .

Suppose now that all these webpages have links between them, i.e. they refer to each other. This can be
represented in a directed graph, where the nodes are the webpages and the edges are the links.

Example 3. Consider a simple internet with 4 webpages, as shown in the figure below. The arrows
indicate the links between the pages, i.e. webpage 1 links to webpage 2, 3 and 4, whereas 2 only links to
1 and 4.

1 2

3 4

Exercise 11. According to the above graph, which webpage seems the most important? Which one
seems the least important?

Imagine now that we have an enthousiastic web surfer, who starts at a random webpage and then clicks on
a random link on that page. He keeps doing this for a while, and keeps track of which pages he visits.

Exercise 12. Suppose the web surfer is on website 1. What is the probability that he will visit website
2, 3 and 4 next? What about the other websites? If the surfer keeps clicking, which website will he visit
most often?

We are going to represent these probabilities in a matrix, the linking matrix L. For this, we define the linking
vector li for each webpage i. We first count the number of outgoing links from webpage i, and denote this
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number as ni. The linking vector li is then a vector of length N , with 1/ni at position j if there is a link
from i to j, and 0 otherwise. Therefore, the vector li represents the probabilities of going from webpage i
to all other webpages.

Exercise 13. Calculate the linking vectors for the internet in Example 3. As an example. we give
l1 =

(
0 1/3 1/3 1/3

)
.

Answer: l1 = [0, 1/3, 1/3, 1/3], l2 = [1/2, 0, 0, 1/2], l3 = [0, 0, 0, 1], l4 = [0, 1/2, 1/2, 0]

We then define the linking matrix L as the matrix with the linking vectors as columns, i.e. L =
(
lT1 lT2 . . . lTN

)
.

This matrix clearly determines the structure of the internet, and we can use it to calculate the rank of the
webpages. The linking matrix for the internet in Example 3 is then

L =


0 1/2 0 0

1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 1 0

 . (17)

Exercise 14. How could one use this linking matrix to assign a level of importance to every website?

Clearly, important websites will be those that are linked to by many other websites. In the linking matrix,
this is visible as the rows that have few or no zeroes. Therefore, a good first idea to calculate the rank of a
webpage is the following formula

ri =

N∑
j=1

Lij . (18)

However, this formula is prone to an issue.

Exercise 15. What is the problem with simply defining the importance of a webpage by the number of
links pointing to it? How can I easily create a website that is ranked very high? What could we do to
circumvent this issue?

Answer: If someone would want to create a website that is ranked very high, they could simply create
a lot of websites that link to their own website. This would artificially inflate the rank of their website,
and would not be a good representation of the actual importance of the website.

This issue can be resolved by making a website important if it is linked to by many important websites.

Exercise 16. This is clearly a circular definition. Why?

Answer: The importance of webpages is now based on the importance of other webpages. It turns out
that this will not be a problem, but we keep this in mind. We will incorporate this idea by calculating
the rank of a page by weighing the links to it by the rank of the originating page. This is done as
follows:

ri =

N∑
j=1

Lij · rj . (19)

Remember that the elements Lij signify whether there is a link from j to i. Therefore, this equation checks
which websites link to website i, and incorporates how important they are. Note that the above equation
can be written in matrix form as

r = L · r . (20)

Equation (20) reflects the core idea of the PageRank algorithm.
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4.2.1 Solving equation (20)

As mentioned earlier, equation (20) is a circular definition.

Exercise 17. Do you recognize what kind of equation this is? How can we solve it?

Answer: Equation (20) is an Eigenvalue equation for the matrix L and an Eigenvector r with
Eigenvalue 1. The matrix L is called a stochastic matrix, as the sum of the elements in each column is
1.

Theorem 7. A stochastic matrix, one whose rows or columns sum to 1, has an eigenvalue equal to 1.
No other larger eigenvalue exists.

Proof. Take a matrix M whose rows sum to 1. Given that the eigenvalues of a matrix are the same as those
of its transpose, this is sufficient to prove the theorem. The vector v = (1, 1, . . . , 1) is an eigenvector of M
with eigenvalue 1, as

M · v =


∑N

j=1M1j∑N
j=1M2j

...∑N
j=1MNj

 =


1
1
...
1

 = v .

Therefore, the matrix M has an eigenvalue 1.

The proof that no other eigenvalue has a modulus larger than 1 can be done by means of the Gershgorin
circle theorem. This however is beyond the scope of this course.

To solve equation (20), we need to find an eigenvector with eigenvalue 1. We can do this by solving the
equation (L− 1)r = 0, but this can be computationally redundant for large matrices.

There exists an iterative method to do this more efficiently, called the power iteration method. This method
is based on the idea that if we multiply a vector r with a matrix L many times, it will converge to the
eigenvector with eigenvalue the largest eigenvalue of L.

4.2.2 The power iteration method

We illustrate the power iteration method briefly, ignoring some of the subtleties that can arise.

Start with a vector r0, which can be chosen randomly. Suppose the vector r0 can be written as a a linear
combination of the eigenvectors of L, i.e. r0 =

∑N
i=1 aiei, where the eigenvectors are ordered such that e1

has the largest eigenvalue. If we multiply this vector with L, we get

Lr0 =

N∑
i=1

aiLei =

N∑
i=1

aiλiei . (21)

If we repeat this process, we get

Lkr0 =

N∑
i=1

aiλ
k
i ei

= λk1

(
a1e1 +

N∑
i=2

ai

(
λi
λ1

)k

ei

)
.

If we assume that λ1 is strictly larger than all other eigenvalues, we note that all the factors
(

λi

λ1

)k
will go

to zero for k → ∞.
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Exercise 18. When could this method fail? How can we prevent this failure? When is this method
(in)efficient?

Answer: If a1 is zero, the method will not converge to the correct eigenvector. We can mitigate this
by trying a couple different initial values r0.

Therefore, after many multiplications with L, we have that

Lkr0 ≈ λk1a1e1 . (22)

In our case, λ1 = 1, such that Lkr0 ≈ a1e1, i.e. the obtained vector is parallel with the eigenvector with
eigenvalue 1. We can then simply calculate the rank vector r by normalizing the vector Lkr0, to find the
PageRank vector that we were looking for.

Note that this method requires many matrix multiplications, and is therefore only efficient for sparse
matrices, such as the linking matrix L.

4.2.3 The damping factor

With what we have discussed so far, two more problems can still arise.

Exercise 19. Consider an internet with following linking matrix L:

L =


0 1/2 0 0
1/2 1/2 0 0
1/2 0 1 0
0 0 0 1

 .

Draw the corresponding graph, and discuss why we say that this graph has a "closed loop". Hint: think
in terms of the random surfer, that follows links (arrows) at random.

Answer: The graph has a closed loop: once the surfer goes from webpage one to webpage three, he
will keep going back and forth between pages 3 and 4, never to return to 1 and 2.

Such a closed loop is a problem. The linking matrix is still stochastic, but if we apply a power method the
resulting eigenvector will not be what we want the rank vector to represent. It turns out that the vector we
obtain through power iteration in exercise 19 will be (0, 0, 0.75, 0.25).

Exercise 20. Explain why this is not the desired outcome.

Answer: The vector (0, 0, 0.75, 0.25) does not represent the importance of the webpages, as the
webpages 1 and 2 are not represented at all. They are still of similar importance as the other webpages,
but the PageRank algorithm does not find this because of the closed loop.

A similar problem arises when we have a "dead end", i.e. a webpage that has no outgoing links. This will
manifest itself in the linking matrix as a column of zeroes.

Exercise 21. Draw a graph of a small internet with a dead end, and convince yourself that the linking
matrix has a column of zeroes.

In this case, it turns out that the power iteration method will give us a vector with all zeroes in the long
run. This is because our linking matrix is no longer stochastic.

Luckily, there is a simple solution to this problem, called the damping factor. The damping factor is a
parameter α that we introduce in the PageRank algorithm, and is usually set to a number around 0.8 or
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0.9. The idea is that with probability α, the surfer will follow a link on the webpage he is on, and with
probability 1−α, he will jump to a random webpage. The jumping to a random webpage is done to prevent
the problems with closed loops and dead ends. It is represented by a matrix D, where all elements are 1/N .

The new linking matrix is then given by

L = αL+ (1− α)D . (23)

It turns out that the power method still converges with the adjusted linking matrix (23), and the PageRank
vector can be calculated as before.

Exercise 22. The adjusted linking matrix L can be thought of as introducing new links with small
probability between the webpages. Calculate the new linking matrix for the internet in Example 19
with α = 0.85. Interpreting the entries in the matrix as probabilities, show that this interpretation of
introducing new links makes sense.

5 References

These notes are based on my own knowledge of these basic mathematical concepts, and the writing has been
accelerated by the use of Github copilot and its implementation in VSCode. Inspiration has been taken from
the course notes for "Algebraische Structuren" (Algebraic Structures), used in the first year of the Bachelor
of Mathematics at the KU Leuven, at the time taught by Prof. Raf Cluckers - also the author of the lecture
notes. The section on PageRank has been based on (among others) this and this link. Proofs with respect
to the spectrum of the linking matrix have been inspired by this link.
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