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Summary

As of 2015, a new window on the Universe has opened with the first ever direct detection
of a gravitational wave. Today, ground-based interferometers have detected about ∼90
events, providing remarkable confirmations of the predictions of General Relativity as well
as many new insights into black holes and neutron stars. These ground-based detectors
operate in the high-frequency regime, with optimal sensitivity between ∼ 10 and ∼ 1000
Hz.

However, in this high-frequency regime, only the final stage of the inspiral of stellar-mass
compact binaries is visible. There are many more expected phenomena that can be ob-
served in the gravitational-wave sky, but are only visible at lower frequencies. To this end,
the space-based LISA detector is set to launch in the mid 2030s. LISA will allow us to
study gravitational waves in the frequency regime between 10−5 Hz and 0.1 Hz. This will
allow us to see merging white dwarves, EMRIs, merging massive black holes and perhaps
many more exciting phenomena that we are unaware of.

In this thesis, we explore two topics related to LISA science objectives, with the goal
of adding to the extensive amount of preparatory work before the data will actually be
obtained.

In first instance, we will focus on the gravitational-wave background sourced by extra-
galactic white-dwarf binaries. This is the sum of all the signals produced by binary white
dwarves located outside of our Milky Way, which are individually unresolvable. We revisit
old predictions for this background, and compare them to current best estimates for the
(undetected) background due to binary black holes and neutron stars in the high-frequency
band. This shows that the background from white dwarves is likely the dominant one
between ∼ 10−4 Hz and 0.1 Hz., when these estimates are extrapolated to the LISA band.
We determine our own prediction for the background due to extragalactic white dwarves,
and find an amplitude at 1 mHz that is roughly a factor 5 larger than the original esti-
mates. Due to this larger amplitude, the peak in the background around 10 mHz might be
more easily resolved by LISA. Furthermore, we investigate how the background changes
for other explorative models of the cosmic star formation history, and find that the effect
is minor.

On the other hand, we also consider so-called hypercompact stellar clusters. These pu-
tative systems are predicted to form when supermassive black holes merge in star-rich
environments, as would for example happen when galaxies merge. These clusters remain
absent in observations, though studies predict that hundreds of these systems should be
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observable. As one of LISA’s main science objectives is to study the formation history
of supermassive black holes, the detection of such a cluster would provide evidence that
these mergers actually happen, and could provide a lot of information on the formation
history of supermassive black holes.

Predictions for the observational properties of these clusters exist, but so far the inclusion
of stellar-mass black holes was not considered in simulations. We take a first step in
incorporating a stellar-mass black hole population, and find that their presence can cause
the scale of the cluster to increase significantly. Using our new models, we focus on some
specific faint Milky Way halo clusters that could potentially be these elusive clusters. We
explore the parameter space that causes our model to agree with the observed properties
of these candidates, and estimate the three-dimensional velocity dispersion. This quantity
could help to determine the nature of the candidates.



Summary for a General Audience

In 1915, Einstein published his Theory of General Relativity, which provided a descrip-
tion of gravity in a revolutionary way. His theory has many profound implications, among
which the existence of gravitational waves. These waves are ripples of space itself, mean-
ing that they essentially distort lengths when they pass through the Earth. Gravitational
waves arise as a consequence of the most violent events in the Universe, like for example
the merger of two black holes. Luckily, these waves are created at distances far away from
Earth, such that they have lost a lot of energy when they arrive at our detectors.

In 2015, such a gravitational wave was observed for the first time by the Laser Interferom-
eter Gravitational-Wave Observatory (LIGO). By now, already 90 detections have been
made, and provided the scientific community with a lot of information. The limitation
of our current detectors is that they operate at high frequencies, between ∼ 10 Hz and
∼ 1000 Hz. This means that they can only see a small part of all the gravitational waves
that are being created in the Universe.

The future space-based detector LISA, set to launch in the mid 2030s, aims to solve this
problem. It will consist of three identical spacecraft that form an equilateral triangle
with arms around 2.5 million km. They will shoot lasers in between them, as they can
detect the effect of gravitational waves. Due to this new configuration, LISA will be most
sensitive to waves with frequency between 0.01 mHz and 0.1 Hz. Therefore, LISA will
see different phenomena than our ground-based detectors, leading to a new treasure of
information.

In this thesis, we explore two topics related to LISA science goals. On the one hand, we
will study the gravitational wave background due to extragalactic white-dwarf binaries.
This is the collective signal of all the binary white dwarves (remnants of stars with a
mass below 8 times that of the Sun) outside of the Milky Way, which LISA may be able
to measure. We make our own prediction of how strong this signal is, and investigate
whether it can be distinguished from other background signals.

On the other hand, we explore hypercompact stellar clusters. These systems are created
when two supermassive black holes, with masses millions or billions of times that of our
Sun, merge. They have not been observed yet, but we investigate whether the presence
of small black holes, with masses only tens of times that of the Sun, could alter the
predictions of the appearance of these clusters. We then compare our models to some
observational candidates, and discuss how measuring the velocities of the stars in these
candidate systems could lead to a definitive conclusion on their nature.
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Chapter 1

Introduction

Our Universe is filled with stars, illuminating the dark emptiness of space. They are born
out of clouds of dust and gas that collapse under their own gravity. Once the density
has become sufficiently large, resulting in strong heating of the matter, a nuclear engine
in the center ignites: energy and radiation get transported outwards, and a star is born.
The lifecycle of the new-born star depends largely on its mass1. The minimal mass for a
protostar to ignite is ≃ 0.08M⊙. Objects that fall below this limiting mass don’t ignite
and are referred to as brown dwarfs.

Above this critical mass, stars usually manage to start the first stage of nuclear burning,
in which hydrogen is the fuel for the fusion reaction. When a star is burning hydrogen
in equilibrium, it is said to be on the main sequence (MS). Stars spend most of their life
on this main sequence, burning hydrogen in their cores, but at some point most of the
fuel will be used. The core will now largely consist of helium - the product of hydrogen
burning. The temperature in the core is not high enough to start the burning of helium.
The core will contract to increase the temperature, as the fusion of helium requires a
temperature much larger than was necessasry for hydrogen (108 K vs. ∼ 5 · 106 K).
The exact details depend on the mass of the star, but there are three main outcomes,
which we discuss in Sec. 1.1 (largely based on [Aerts, 2021]). Afterwards, we give a short
introduction to gravitational waves in Sec. 1.2, and present the future gravitational-wave
detector LISA in Sec. 1.3. This thesis is centered around 2 science topics that can be
explored with this instrument, and we present our concrete goals and motivation in Sec.
1.4.

1.1 Stellar remnants

The luminosity L - the rate at which energy is radiated away - of a star is seen to increase
when its mass M increases. Over the majority of the mass range, the relation

L ∝M3.3 (1.1)

1This is the case for isolated stars. However, the majority of massive stars is expected to experience
binary interaction [Sana et al., 2012]. This affects the stellar evolution, such that the life of a star in a
binary can differ significantly from that of a similar star in isolation.
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2 Chapter 1. Introduction

provides a good fit. Given that the energy reservoir available for nuclear fusion scales
with M through Einstein’s mass-energy relation, the lifetime T of a star scales as

T ∝ M

L
∝M−2.3 . (1.2)

This shows that the lifetime of stars drastically decreases when the mass increases, i.e.
the more massive the star, the shorter its lifetime.

Stars with an initial mass ≲ 0.9M⊙ have main-sequence lifetimes that are longer than the
current age of the Universe, and are therefore all still in their hydrogen burning phase. we
focus and stars above this bound, which are all massive enough to start helium burning
when the hydrogen in the core is depleted. In order to start a new burning cycle, the
core of the star contracts to increase the temperature, enabling fusion of the next element:
helium. Depending on the mass of the star, it can go through other burning cycles as well2.

If the initial mass is ≲ 8M⊙, the burning of fuel will come to a halt before the core
consists of iron. The star will lose a large part of its outer envelope (e.g. due to stellar
winds or binary interaction), leaving only the core behind, which cools to a white dwarf
(WD). The pressure that keeps this remnant from collapsing is provided by the electrons
in the core, which form a degenerate electron gas. WDs typically have sizes comparable to
the Earth, and masses ≳ 0.1M⊙ and ≲ 1.44M⊙, known as the Chandrasekhar limit. The
mass distribution of WDs peaks around 0.6M⊙ [Torres et al., 2021, Tremblay et al., 2016].

Stars with initial masses ≳ 8M⊙ will go through all the burning cycles until the core
consists of iron. As iron is the most stable element, the fusion of iron does not produce
energy, but requires energy. The star has no way of producing energy through nuclear
fusion to counteract the gravitational force, and its life is about to end: the core collapses
under its own gravity, and the star explodes as a supernova. Highly energetic photons
dissociate the heavy elements that were formed in the fusion cycles, and the core of the
star now becomes a mixture of electrons, protons and neutrons. The density increases
drastically due to the collapse of the star, and the protons and electrons recombine to
neutrons. The increase in core pressure produces a shock wave that propagates through
the outer layers that surround the core of neutrons. These outer layers get expelled, and
the pressure in the core becomes so high that the neutrons become degenerate. The de-
generate neutron gas is able to prevent further gravitational collapse, and the remnant is
called a neutron star (NS). These objects have radii of O(10) km, and masses thought to
be ≲ 2M⊙ [Burgio et al., 2021].

If the star has an initial mass ≳ 25M⊙, the remnant after the supernova is too heavy
to persist as a NS. There is no known mechanism that can support a heavier compact
object, meaning that gravity will win and the remnant collapses into a black hole (BH).
BHs are characterised by the fact that they possess an event horizon, a boundary close to
the BH that is only traversable in one direction. The gravitational pull is so strong that
even light cannot escape once it has crossed this horizon.

2Each of these new cycles, e.g. carbon burning and silicon burning, happens on a time-scale that is
very short compared to that of the previous cycle.
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It is important to make the distinction between theoretical and astrophysical black holes.
The former are spacetimes, solutions of the Einstein equations in General Relativity
(GR), that contain a singularity. The most famous examples are the Schwarzschild and
Kerr spacetimes, which describe a non-rotating and rotating (uncharged) BH respectively.
However, it is very hard to prove that the BHs we see in space actually correspond to
these theoretical objects. So far, there is no evidence that this is not the case.

By now, there is extensive observational evidence for all three of these objects. WDs
were originally discovered as very faint stars with spectra that did not match other stars
of low luminosity [Adams, 1914, Flammarion, 1877, Van Maanen, 1917]. By now, tens
of thousands white dwarves have been observed [Eisenstein et al., 2006, Gentile Fusillo
et al., 2021].

Due to the conservation of angular momentum, a star that collapses to a NS causes the
latter to have an enormous angular frequency, which can be O(10) Hz. The discovery
of pulsars [Hewish et al., 1968], radio sources that show pulses with similar frequencies,
established the existence of NSs. They are thought to originate from rapidly spinning
NSs where the rotation axis and magnetic poles are misaligned. These pulses cannot be
explained by rotating WDs: the centifugal force would cause the WD to get disrupted.
Furthermore, observations of a NS binary lead to the first indirect detection of gravita-
tional radiation [Taylor et al., 1979].

The first observational evidence for a BH came in 1972, when astronomers investigated
the binary system Cygnus X-1. By analyzing the X-ray spectrum originating from the
binary, together with the radial velocities of the visible companion, there was conclusive
evidence that the companion of the star is a compact object [Bolton, 1972, Webster and
Murdin, 1972]. As the mass of this invisible companion was estimated to be larger than
2M⊙, which is assumed to be too large for a white dwarf or neutron star, the authors
concluded that the companion was possibly a black hole. The existence of BHs as as-
trophysical objects has since been solidified, culminating in the first direct observation of
merging black holes with the use of a gravitational-wave detector [et al., 2016] and the
direct imaging of the surroundings of a supermassive black hole (SMBH) by the Event
Horizon Telescope [et al., 2019, 2022].

Even though the BHs as predicted by GR are able to explain current observations, it is
expected that they are not the final description of these dark objects. Theoretical reasons
for this exist, like the information paradox [Mathur, 2009] and the fact that we don’t
expect to see true infinities in nature. Therefore, other models for BHs have been given in
theories that go beyond GR, that try to solve these problems [Cardoso and Pani, 2019].
Predictions have been made for their observational appearance (e.g. [Bacchini et al.,
2021, Staelens et al., 2023]) and signatures in gravitational waves (e.g. [Guo et al., 2019,
Konoplya and Zhidenko, 2011]), but as of today observations do not prefer them over the
”classical” GR solutions.
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1.2 Gravitational waves

The vast majority of knowledge that we have gathered about the Universe is the result
of observations of electromagnetic radation. For centuries now, scientists have used tele-
scopes to observe the night sky, and advances in technology have enabled us to look with
increasing resolution and in different wavebands. However, as of 2015 a new window on
the Universe has opened, with the first direct detection of a gravitational wave (GW)
[et al., 2016]. GWs are a prediction of Einstein’s theory of GR, and they are created in
some of the most energetic events in the Universe. They enable us to study the gravita-
tional force, in a way that complements the electromagnetic observations: the action of
gravity on bodies is dark, meaning that we cannot expect all interesting events to be ac-
compagnied with an electromagnetic signal. In this section, we review some basic aspects
of the theory following [Carroll, 2019], briefly present the first succesful detectors.

1.2.1 Theory

Einstein’s theory of GR relates the curvature of spacetime to the energy (matter) that is
present in a region. The governing formula is

Gµν ≡ Rµν −
1

2
Rgµν = 8πTµν , (1.3)

where we set G = c = 1. In this formula, Rµν and R are the Ricci tensor and scalar
respectively, which are constructed out of first and second derivatives of the metric tensor
gµν . The metric tensor describes the spacetime, as well as the motion of particles in it.
The right-hand side of (1.3) is proportional to the energy-momentum tensor Tµν , describ-
ing the matter and energy at every point in space. The interested reader can find some
background on GR and the Einstein equations in Appendix A.

The easiest solutions of (1.3) can be obtained by setting the energy-momentum tensor to
zero, i.e. vacuum solutions. For example, the Schwarzschild and Kerr solutions describe
black holes, which are solutions of these vacuum equations. To study gravitational waves,
we consider the case where the metric is almost that of flat space, i.e. the Minkowski
metric ηµν = diag(−1, 1, 1, 1). We decompose the metric as

gµν = ηµν + hµν , (1.4)

where hµν is considered a perturbation on top of flat space, i.e. |hµν | ≪ 1. This assumption
allows us to ignore terms that are of higher order in hµν - which is why it is also referred
to as linearized gravity. For example, this means that the inverse metric is given by

gµν = ηµν − hµν , (1.5)

where the indices on h are raised using the Minkowski metric. Using the metric (1.4)
as an Ansatz, one can derive the linearized Christoffel symbols, Riemann tensor, Ricci
tensor and scalar. Taking everything together, the linearized Einstein tensor becomes

Gµν =
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−□hµν − ηµν∂ρ∂λh

ρλ + ηµν□h
)
, (1.6)
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where h = ηµνhµν and □ is the d’Alembertian operator.

In principle, the metric tensor has ten independent components, as it can be seen as a
symmetric 4× 4 matrix. We decompose the metric perturbation as follows:

h00 = −2Φ ,

h0i = wi ,

hij = 2sij − 2Ψδij ,

where Ψ is proportional to the trace of hij such that the strain sij is traceless:

Ψ = −1

6
δijhij ,

2sij = hij −
1

3
δklhklδij .

Due to the gauge freedom of GR, we can set the strain to be spatially transverse:

∂is
ij = 0 . (1.7)

The residual gauge freedom can be used to set

∂iw
i = 0 , (1.8)

resulting in the so-called transverse gauge. Restricting to the vacuum case, the lin-
earized Einstein tensor (1.6) tells us that, in the transverse gauge,

Φ = Ψ = 0 ,

wi = 0 ,

□sij = 0 .

We can summarise this as follows:

hTT
µν =


0 0 0 0

0

0 2sij

0

 , (1.9)

i.e. satisfying

hTT
0ν = 0 ,

ηµνhTT
µν = 0 ,

∂µh
µν
TT = 0 ,

□hTT
µν = 0 .

This is usually referred to as the transverse traceless gauge. The last of these equations
is a wave equation. Therefore, we make the Ansatz

hTT
µν = Cµνe

ikσxσ

. (1.10)
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Figure 1.1: The effect of a gravitational wave on a ring of test particles, where the wave is
polarized along the (top) ”plus” polarization (bottom) ”cross” polarization. The different
figures correspond to different time instances. Figure taken from [Carroll, 2019].

The wave equation then results in kσk
σ = 0. So, demanding that the plane wave is a

solution of the Einstein equations gives us that the wave vector must be null, i.e. the
wave must travel at the speed of light. Ensuring that the wave is transverse gives us the
condition that

kµC
µν = 0 . (1.11)

This condition can be made more explicit by assuming a wave that travels in the z-
direction, i.e. kµ = (ω, 0, 0, ω), where ω is the frequency of the wave and the last compo-
nent is fixed by the requirement that the wave vector is null. We then find that Cµν takes
the form

Cµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 , (1.12)

leaving only two independent components due to the requirement that hTT
µν is symmetric

and traceless. These two components are the two polarizations that a gravitational wave
in GR can have3. The ”plus” and ”cross” polarization owe their name to the effect that
polarized waves have on a circle of test particles, as can be seen in Figure 1.1.

The calculations outlined above form the most accessible explanation of gravitational
waves in GR. Even though these calculations were performed shortly after Einstein pub-
lished his theory, it was not until the 1960’s that the existence of gravitational waves stood
on firm footing. Even Einstein himself thought that the existence of these waves was a
mere artifact of the coordinates, and would not have physical relevance. This changed

3The number of polarizations can increase in alternative theories of gravity. See e.g. [Hagihara et al.,
2019].
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with the pioneering work of e.g. Bondi, Sachs and Penrose, who created a new framework
to deal with gravitational radiation, by working with the conformally completed spacetime
[Bondi et al., 1962, Newman and Penrose, 1962, Sachs, 1962]. Since then, the physical
reality of gravitational radiation seemed to be proven, and its consequencues were first
observed less than two decades later [Taylor et al., 1979].

1.2.2 Ground-based detectors

Nowadays, the majority of gravitational-wave discoveries are attributed to the ground-
based GW detectors. The most famous one is the Laser Interferometer Gravitational-
Wave Observatory (LIGO), actually consisting of two detectors in Hanford and Livingston
(USA). Together with Virgo (Italy) and KAGRA (Japan), they form the LVK collabora-
tion, providing the majority of breakthroughs in the field.

All three are examples of a laser interferometer (see Figure 1.2). A standard interferometer
consists of two perpendicular arms of length L, which is 4 km in the case of LIGO4. Each
of these arms is formed by two mirrors, which reflect the light and increase the effective
length of the arm by a factor ∼ 300. When a gravitational wave passes through the
observatory, it alters the length of both arms with a distance δLx, δLy, depending on the
source location in the sky. The measured difference in length of the arms,

∆L(t) = δLx − δLy = h(t)L , (1.13)

is expressed in a quantity h(t) called the GW strain5, which is on the order of 10−21 for
the signals that LIGO detects. In the case that there is no wave passing by, the two laser
beams interfere destructively, meaning that no light reaches the photodetector. However,
when a wave passes by, the difference in length induces a phase difference in the beams,
which no longer interfere destructively. Therefore, if light arrives at the detector, this
must be due to a GW (assuming there is no noise). [et al., 2016]

The third gravitational-wave transient catalog (GWTC-3) [Abbott et al., 2021] contains
90 events that are likely of astrophysical origin, summarizing the detections of Advanced
LIGO and Advanced Virgo up to the end of the third observing run. Most of them are
binary BH mergers, but the catalog also contains two confident BH-NS binaries, and two
NS binaries [Collaboration et al., 2022]. Other remarkable results include the first event
detected by both LIGO and Virgo [et al., 2017] and a binary BH merger leading to an
end product of ∼ 142M⊙, falling in the mass range of intermediate mass BHs [et a;., 2020].

These ground-based interferometers operate in a high frequency regime (see Figure 2.1),
on the order of 10-1000 Hz. In this band, they can detect signals from stellar-mass com-
pact objects at low redshift. This is a consequence of Kepler’s law (2.1), which we will
come back to in Sec. 2.1. This means that these ground-based detectors are very good
at detecting the actual merger of binaries consisting of BHs and NSs. However, they are
insensitive to many other sources of GWs, which is why new detectors are being developed

4The arms of the Virgo and KAGRA detectors are about 3 km.
5The equation (1.13) should also contain a geometrical factor, as the relation between the strain and

length difference depends on the source location with respect to the interferometer plane.
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Figure 1.2: Schematic representation of a laser interferometer for GW observations. The
laser emits light towards the beam splitter, which splits the beam in two. Both beams
are then reflected between the mirrors, denoted as ”test mass”, before arriving back
at the beam splitter. If no wave is passing through the observatory, the beams interfere
destructively and no light is detected at the photodetector. (”LIGO” by MOBle is licensed
under CC BY 2.0, following [Mayerson et al., 2019])

(see Sec. 1.3).

Aside from interferometers, pulsar timing arrays (PTAs) are also used nowadays to detect
gravitational waves. The idea is to monitor a collection of pulsars, which serve as excellent
cosmic clocks, and look for correlations in the arrival times of their pulses. We do not
treat this further in this work, but the interested reader can consult a review like [Yunes
and Siemens, 2013].

1.3 The LISA mission

The Laser Intereferometer Space Antenna (LISA) is the first space-based GW interfer-
ometer, set to launch in the mid 2030s. As explained in the previous section, current
ground-based detectors have already detected many exciting events, but are not able to
probe low-frequency GWs below 1-10 Hz: LISA is the proposed solution to this problem,
and we provide a short overview in this section, largely based on [Amaro-Seoane et al.,
2017].

LISA will scan a broad range of frequencies f ∼ 10−5 − 10−1 Hz, with peak sensitivity
around 1 mHz. The observatory will consist of 3 identical spacecraft in a triangular for-
mation, separated 2.5 million km and with 6 laser links between them, trailing Earth’s
orbit around the Sun. Each spacecraft will contain 2 freely falling test masses, that serve
as end mirrors for different interferometer arms. A laser beam with a few Watts of power
is emitted from each spacecraft, but due to beam divergence the received laser light has a

https://commons.wikimedia.org/wiki/File:Ligo.gif
https://en.wikipedia.org/wiki/User:MOBle
https://creativecommons.org/licenses/by/2.0/
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Figure 1.3: Depiction of the LISA orbit. [Amaro-Seoane et al., 2017]

decreased power on the order of some 100 pW. Therefore, the laser beam cannot simply
be reflected as was the case for the ground-based detectors: instead, a fresh high-power
beam is emitted, phase-locked to the incoming weak beam.

The technology behind the design was proven effective by the LISA Pathfinder mission:
it is possible for a spacecraft to follow two encapsulated freely falling test masses, and
to measure their relative positions. The combination of the three links resembles two
interferometers that measure the two polarizations of the GW simultaneously, while a
third Sagnac configuration is used to characterise the instrumental noise.

LISA will be located in a stable Earth-trailing heliocentric orbit, about 50 million km
away from Earth (see Figure 1.3). Due to the orbit around the sun, the direction of
the source can be reconstructed for signals that last at least several weeks. The nominal
mission duration of LISA is 4 years, which can be extended up to 10 years.

LISA is designed with several science objectives in mind, listed in [Amaro-Seoane et al.,
2017] as follows:

• SO1: Study the formation and evolution of compact binary stars in the Milky Way
Galaxy.

• SO2: Trace the origin, growth and merger history of massive black holes across
cosmic ages.

• SO3: Probe the dynamics of dense nuclear clusters using EMRIs.

• SO4: Understand the astrophysics of stellar origin black holes.

• SO5: Explore the fundamental nature of gravity and black holes.
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• SO6: Probe the rate of expansion of the Universe.

• SO7: Understand stochastic GW backgrounds and their implications for the early
Universe and TeV-scale particle physics.

• SO8: Search for GW bursts and unforeseen sources.

In this thesis, we will mainly focus on SO2 and SO7.

It is believed that most massive galaxies harbor a SMBH in their center. These black holes
can have masses in the range ∼ 105 − 109M⊙, and can be observed e.g. through violent
accretion processes that radiate electromagnetic radiation. It is however unclear how they
are formed. In particular, observations show that SMBHs at the upper end of this mass
range already formed before the Universe was 1 Gyr old [Wang et al., 2021]. Therefore,
if these SMBHs are formed hierarchically, many of their seeds must be present at early
times. These seeds could form as the result of collapsing population-III stars, dense gas
clouds, very compact clusters, or originate from primordial BHs [Volonteri, 2010]. These
seeds would then grow through mergers and accretion, but the redshifts at which these
mergers happen are too large for our ground-based interferometers to detect them.
LISA is hoped to see some of these seed black holes at large redshifts: it is designed to
have the capability of detecting the inspiral of massive BHs between 103M⊙ and 105M⊙,
at formation redshifts between 10 and 15. At lower redshifts (z ≲ 9), it should detect
coalescing BHs with masses on the order of 104 − 106M⊙.

With respect to SO7, one of the main LISA goals is the direct detection of a stochastic
gravitational-wave background (GWB). Different types of backgrounds exist (see Sec.
2.1), but its origin is encoded in its frequency dependence. The aim is to detect the
GWB from coalescing binaries, for which upper limits exist based on LIGO data (Sec.
2.2). Furthermore, LISA is also designed to measure or set limits on any background of
cosmological origin. The detection and characterization of such a background can lead to
improved detections of individual resolved events.

1.4 Motivation and research objectives

The LISA Science Objectives that were layed out in the previous section underline the
enormous amount of science that can be done once the detector is up and running. All
these topics are still active fields of research, and this thesis aims to shed additional light
on two of the science objectives.

On the one hand, Chapter 2 investigates the GWB generated by extragalactic WD bi-
naries. SO7 revolves around the hope of detecting the GWB generated by inspiralling
compact binaries, which remains undetected in the frequency band of ground-based de-
tectors. A lot of work is done on the background generated by BH binaries, which is
expected to dominate over that of the NS binaries. Upper limits on this background
have been produced by [LIGO Scientific Collaboration, Virgo Collaboration, and KA-
GRA Collaboration et al., 2021], which we revisit in Sec. 2.2. However, we revisit earlier
work by [Farmer and Phinney, 2003] in Sec. 2.3.1, in which predictions are made for
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the background that arises from extragalactic WD binaries. We compare their estimates
to the LVK results in Sec. 2.3.2, and note that they suggest that the WD background
dominates in the LISA band. As all three components are present in this frequency band,
the detector will only measure the sum of the different contributions. In theory, all these
components exhibit the same frequency dependence, and therefore the question is wheter
they can be disentangled. If the answer to this question is negative, the prospects of
drawing conclusions for one of the components are grim. We model the WD background
in Sec. 2.4 and 2.5, in which we provide our own predictions for the amplitude and inves-
tigate whether the WD contribution can be disentangled.

On the other hand, we work in the context of SO2, focusing on merging SMBHs. When
two SMBHs merge, the remnant receives a recoil kick to conserve the momentum that is
carried away by gravitational radiation. If this merger takes place in a star-dense region -
like the center of a galaxy - stars that are strongly bound remain bound. This leads to a
dense cluster that is ejected from the core of the galaxy, with the remnant SMBH in the
center: a hypercompact stellar cluster (HCSC). These systems have not been observed
yet, even though studies [Merritt et al., 2009, O’Leary and Loeb, 2012] predict that hun-
dreds of these systems should be detectable with present-day telescopes. These systems
would provide information about the merger event, as the kick velocity depends on the
binary parameters. It turns out that this kick velocity is encoded in the observed velocity
dispersion of HCSCs, and therefore observations of these systems would help determine
the GW kick distribution, which in its turn constrains the merger history of SMBHs. Fur-
thermore, the detection of a HCSC would also provide direct proof that SMBHs actually
merge, which is one of the major assumptions underlying the LISA mission.

However, current predictions for the size of these clusters assume that, in addition to
the central SMBH, the only members of such a HCSC are stars. In Chapter 3 we add
a stellar-mass black hole (smBH) population to the cluster, and show that it can signifi-
cantly increase the size of the cluster. We present a summary of the literature in Sec. 3.1
and 3.2.1, after which we motivate the addition of the smBH component in Sec. 3.2.2. We
review the results of earlier simulations in 3.3, and present the models and Fokker-Planck
code that we use in Sec. 3.3.3. We then discuss some general results in Sec. 3.4, and
apply them to model two observational candidates in Sec. 3.5.

We finish by summarizing our conclusions in Chapter 4, where we also present future
prospects for research related to this work.





Chapter 2

The Stochastic GW Background
from Extragalactic WD Binaries

The first science objective that we want to address further is SO7, as described in 1.3:
”Understand stochastic gravitational-wave backgrounds and their implications [...]”. We
start with the general theory on GWBs in Sec. 2.1, in which we focus mainly on the
background generated by coalescing compact binaries. In Sec. 2.2 we present the most
recent observational constraints on GWBs, as determined by ground-based detectors.
Subsequently, we focus on the predicted GWB generated by extragalactic WD binaries
in Sec. 2.3.1, and compare this to the predictions for the BH and NS backgrounds in the
remainder of Sec. 2.3. We point out1 that the background from WD binaries is likely the
dominant one in the LISA frequency band.
The remainder of this chapter aims to study and model this GWB. Sec. 2.4 presents a
first approach that normalizes the final result to the predictions of 2.3.1, but investigates
the influence of the WD population and redshift distribution by examining toy models.
Finally, Sec. 2.5 presents the results of a more elaborate model, in which we do not nor-
malize the final result and make our own prediction for the amplitude of the background.
We also use this model to investigate the influence of the cosmic star-formation history
(SFH) in Sec. 2.5.4. The cosmological parameters used throughout the Chapter are the
Planck 2018 results [Planck Collaboration et al., 2020], and calculations are done with
the astropy module in Python.

2.1 Gravitational-wave backgrounds

An astrophysical GWB is the collection of all GWs generated by astrophysical processes
that are individually unresolved by the detectors. The background of interest for this
research is that generated by a collection of inspiralling and merging binary systems.
There is good reason to look for such a background, as it can teach us a lot about the
merger rate as a function of redshift, thus constraining formation models for these binaries.
We study this GWB in Sec. 2.1.1, and briefly comment on other types of backgrounds in
Sec. 2.1.2.

1We are not the first ones to notice this, but generally speaking this seems to be forgotten.
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2.1.1 Coalescing compact objects

Depending on the type of compact object, the signal will be observable in a certain
frequency regime. Indeed, Kepler’s third law tells us that the orbital separation of a
binary a is linked to its orbital frequency ν and the component masses:

a3ν2 =
G(M1 +M2)

4π2
. (2.1)

The frequency of the emitted GW, which we will denote as f , is twice the orbital fre-
quency: f = 2ν. So, depending on the masses and type of compact object, there is a
minimal orbital separation (before merger) resulting in a maximal GW frequency. As the
ground-based GW detectors operate in the high-frequency regime, they can only observe
the final inspiral phase of binary smBHs, binary NSs or BH-NS binaries. Binaries consist-
ing of more massive black holes, stars or white dwarves are not seen by these detectors,
as they merge before they enter the required frequency regime. LISA, however, may be
able to observe these binaries, depending on the amplitude of the signal.

Evidently, we expect that the gravitational-wave sky is dominated by sources in our own
Milky Way, as they are nearby. This project is concerned with the stochastic background
from extragalactic sources, which may a priori seem hard to detect given the dominant
signal from the local sources. However, the galactic sources are expected to be anisotrop-
ically distributed with most of the sources located in the galactic disk. As LISA will
monitor the entire sky, the detector beam pattern will rotate. This leads to the galactic
signal being modulated, such that it can eventually be extracted from the measurements
and separated from the extragalactic component [Adams and Cornish, 2014].

Theoretical derivation

We start by deriving the expected GWB produced by a population of compact binaries in
the adiabatic inspiral phase, following [Phinney, 2001, Renzini et al., 2022]. The binary
is characterized by the masses M1,M2, and we assume that Kepler’s third law holds and
that the orbits are circular2. Furthermore, we assume that the binary merges due to GW
loss on a timescale much shorter than the age of the Universe. The reason is that we can
then assume that all of the inspiral occurs at the same redshift as the merger. In general,
this is a good approximation, since the frequency evolution of the binary depends strongly
on the frequency, such that in general binaries either merge quickly or not at all. Indeed,
it turns out that the orbital frequency ν of the binary evolves as [Farmer and Phinney,
2003]

ν̇ = Kν11/3 , (2.2)

where K is a constant depending on the chirp mass

M =
(M1M2)

3/5

(M1 +M2)1/5
(2.3)

2This assumption is reasonable, since generally speaking the binary circularizes. [Farmer and Phinney,
2003] also considers eccentricity for the orbits, which leads to emission at all harmonics n of the orbital
frequency, with fn = nν.
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of the binary:

K =
96

5
(2π)8/3

(
GM
c3

)5/3

≈ 3.7 · 10−6

(
M
M⊙

)5/3

s5/3 . (2.4)

This allows us to derive that a single binary, born at time t0, obeys

ν(t)−8/3 − ν
−8/3
0 = 8K(t0 − t)/3 , (2.5)

where ν0 is the frequency at birth, at time t0.

We focus on the dimensionless energy density spectrum

ΩGW(fr) =
1

ρcc2
dEGW

d ln fr
, (2.6)

where fr is the received GW frequency, and ρc =
3H2

0

8πG
is the critical density for a closed

Universe. We will focus on isotropic backgrounds here, but it is possible to include
anisotropy by adding a dependency on the line of sight n (see (2.16)). First, we define
the GW frequency in the rest frame of the emitter fe, which is related to the measured
frequency fr as fe = fr(1 + z) due to cosmic redshift.

In an isotropic and homogeneous Universe, the present-day energy density is equal to

EGW =

ˆ ∞

0

dfe

ˆ ∞

0

dzN(z)
1

1 + z

dEGW

dfe

=

ˆ ∞

0

dfr
fr
fr

ˆ ∞

0

dzN(z)
dEGW

dfe
, (2.7)

where N(z) is the number density of emitters at redshift z, and dEGW

dfe
is the energy

spectrum of the source measured in its own rest frame , such that we included a factor
(1 + z) to account for the redshift. Therefore, we must have that

ΩGW(fr) =
fr
ρcc2

ˆ ∞

0

dzN(z)
dEGW

dfe
. (2.8)

We allow for variation in the source population by averaging over the source population
parameters 〈

N(z)
dEGW

dfe

〉
=

ˆ
dθp(θ)N(z; θ)

dEGW(θ)

dfe
(2.9)

to find that

ΩGW(fr) =
fr
ρcc2

ˆ ∞

0

dz

〈
N
dEGW

dfe

〉
. (2.10)

We can approximate the emitted GW radiation by the leading quadrupole order [Hawking
and Israel, 1989]

dEGW

dfe
=
π2/3

3
G2/3M5/3f−1/3

e for fmin < fe < fmax . (2.11)
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The limiting frequencies depend on the source properties. The lower limit fmin is set by
the separation of the system after circularisation, and is such that the final merger is
smaller than the Hubble time. The frequency at which the source emits increases over
time, until the binary components come into Roche lobe contact, or the evolution be-
comes dominated by tidal forces. This sets a minimal orbital separation, and therefore a
maximal frequency for the binary. As an example, for 2 white dwarfs of 0.3M⊙ we need
fmin > 10−4 Hz in order to merge in less than 1010 yr, whereas fmax ≈ 0.01 Hz. A pair of
neutron stars, however, has fmax ≈ 1.4 · 103 Hz. [Phinney, 2001]

The co-moving number density can be rewritten as an integral over M

N(z) =

ˆ Mmax

Mmin

dN

dM
dM (2.12)

to find

ΩCB
GW(fr) =

(πG)2/3

3ρc
f 2/3
r

ˆ ∞

0

dz
1

(1 + z)1/3

ˆ Mmax

Mmin

dM dN

dM
M5/3 . (2.13)

It should be noted that the limiting frequencies may depend on the chirp mass (e.g. the
size of the Roche lobe changes), such that it may not be completely correct to sum over
all the different chirp masses and keep this exact frequency dependence. In the case of a
single chirp mass, however, the integral over M becomes trivial to find that

ΩCB
GW(fr) ∝ f 2/3

r M5/3 . (2.14)

We will often use this result in the form

Ω (f) = Ω (fref)

(
f

fref

)2/3

, (2.15)

where fref is a reference frequency at which we can estimate / measure the GWB.

The main result is that the GWB from coalescing binaries is expected to scale as Ω ∝ f 2/3,
and is independent of the details of the cosmology, other than the assumption of homo-
geneity and isotropy. Furthermore, it only depends on the source characteristics through
the distribution in redshift and chirp mass, and the limiting frequencies.

However, in practice the frequency dependence of the GWB can differ from (2.15). One
of the approximations we made is that the entire merger process happens at one specific
redshift, which is not exact. Secondly, if there is a distribution in chirp mass, the f 2/3

behaviour only holds at frequencies at which all the binaries can emit. For frequencies
above the maximal frequency for some of the binaries, the increase in Ω will be less steep,
as some of the systems do not contribute anymore.

If new sources are being injected, [Farmer and Phinney, 2003] show that Ω ∝ f 10/3M10/3

for f ≲ fmin, under the assumption that the binaries are distributed roughly uniform in
log ν at their birth. Recall that fmin was defined as the minimum birth frequency of a
binary such that it merges in less than a Hubble time, and that the strong frequency
dependence of (2.2) means that binaries either remain at an approximate constant fre-
quency, or merge quickly. Therefore, we will refer to f ≳ fmin (Ω ∝ f 2/3) as the spiral-in
regime, and to f ≲ fmin (Ω ∝ f 10/3) as the static regime.
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2.1.2 Other backgrounds

In the previous section, we have considered an isotropic background. It is however possible
to relax that assumption, and consider anisotropic GWBs. The reason for the anisotropy
can be that the sources follow a particular distribution on the sky, or line-of-sight effects
due to small anisotropies in the matter density through which the waves propagate. The
fractional GW density is then redefined per solid angle

Ω(f,n) =
1

ρcc2
dEGW

d ln f dn
. (2.16)

This anisotropic GWB has been looked for as well, but without success so far [LIGO Sci-
entific Collaboration, Virgo Collaboration, and KAGRA Collaboration and others, 2021].

The frequency dependence (2.15) is a particular example of a power-law GWB

Ω(f) = Ω (fref)

(
f

fref

)α

, (2.17)

where α = 2
3
. There are other proposed backgrounds with more exotic origin that also

exhibit a power-law dependence on the frequency [Renzini et al., 2022]. A noteworthy
example is a GWB that arises as a byproduct of inflation, which should be approximately
frequency-independent (α = 0) above ∼ 10−18 Hz. Such a background should have left
imprints on the cosmological microwave background, which astrophysicists can look for
[Kamionkowski et al., 1997]. Other examples of cosmological backgrounds include those
due to phase transitions and cosmic strings. There are other astrophysical sources that
can produce a background as well, like supernovae, that can give rise to a background
for which α = 3, and rotating neutron stars [Regimbau, 2011]. An illustration of possible
backgrounds across the frequency spectrum is given in Figure 2.1.

2.2 Upper limits from LVK

In this section we summarize the current constraints on stochastic GWBs, as obtained by
the LVK collaboration3. The first three observing runs of Advanced LIGO and Advanced
Virgo have lead to a total of 90 observed GW events [Abbott et al., 2021]. Scientists have
looked for an isotropic stochastic GWB in the data, but no evidence has been found so
far. They were able to place upper limits on the GWB however, which will be used in
Sec. 2.3.2.

Importantly, the ground-based interferometers observe in the frequency range f ∼ 10−103

Hz, in which we don’t expect to observe WD binaries, as the required orbital separation
is too small for a WD binary to emit at this frequency. Therefore, only smBHs and NSs
are expected to contribute to a background from coalescing compact binaries.

3I was informed by Hannah Duval that in the foreseeable future results should be published that
are obtained with PTAs, which may or may not have detected some background signal. The principles
behind these detections can be found in e.g. [Allen and Romano, 2022, DeRocco and Dror, 2023, Jenet
and Romano, 2014]. I thank Hannah for pointing this out to me
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Figure 2.1: An overview of potential GWB signals across the frequency spectrum. FOPT
refers to a first-order phase transition, and a full description of all these sources is given
in [Renzini et al., 2022]. The dashed curves show the sensitvities of various experiments.
This is Figure 1 in [Renzini et al., 2022]

Searches for a GWB have employed a cross-correlation search, in which the data in fre-
quency is compared to the expected power-law dependence of the energy density. The
current upper limit at the 95% confidence level is [LIGO Scientific Collaboration, Virgo
Collaboration, and KAGRA Collaboration et al., 2021]

ΩGW(25 Hz) ≤ 3.4 · 10−9 . (2.18)

Combining this upper limit with the established detections4 in GWTC2, estimates can
be made for the GWB for binaries consisting of BHs or NSs. These estimates are [LIGO
Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration et al., 2021]

ΩBH(25 Hz) = 4.7+1.6
−1.4 · 10−10 , (2.19)

ΩNS(25 Hz) = 2.0+3.2
−1.4 · 10−10 , (2.20)

Using (2.15), we can extrapolate these estimates into the frequency range in which LISA
will operate. We take fref = 25 Hz, and the estimates above. The reason that we can
extrapolate the estimates in this way, is that that fmin is lower for BHs and NSs than
it is for white dwarfs (see Table 2.1). Therefore, we expect the Ω ∝ f 2/3 behaviour to

4It should be noted that, in a more recent arXiv preprint [Collaboration et al., 2022] updated
values for these estimates are given. They are based on GWTC3 [Abbott et al., 2021], and there-
fore also include an estimate for BH-NS mergers. These more recent estimates are ΩBH(25 Hz) =
5.0+1.4

−1.8 · 10−10 ,ΩNS(25 Hz) = 0.6+1.7
−0.5 · 10−10 ,ΩBHNS(25 Hz) = 0.9+2.2

−0.7 · 10−10. The combination of
the latter two is comparable to what we used now for the NS background, and subdominant to the BH
contribution anyway. For the sake of time until the deadline, the figures in this Chapter are not updated
to display these new values, as the conclusions would not be altered. In what follows, we thus use the
values given in the text.
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extend until below 10−4 Hz, which was an estimate for fmin in the case of WDs. These
extrapolations can be seen in Figure 2.3.

2.3 Extragalactic white dwarf binaries in the LISA

band

Given the constraints and estimates provided in the previous section, we now turn to
the GWB originating from extragalactic WD binaries. These systems only emit below
≲ 0.1 Hz, and are therefore not detectable by ground-based detectors. We revisit the
study [Farmer and Phinney, 2003] that modelled this background and summarize their
findings in Sec. 2.3.1. Afterwards, we extrapolate the observational constraints from the
LIGO band to the LISA band, and argue that the predicted GWB from binary WDs
likely dominates over the other components in Sec. 2.3.2.

2.3.1 Model for the GWB

The authors of [Farmer and Phinney, 2003] modelled the GWB due to extragalactic close
binaries descending from low to intermediate-mass stars. The resulting energy density is
shown in Figure 2.2, for the interval 10−6 Hz < f < 0.1 Hz. To obtain these results,
the authors used a population synthesis code5, keeping track of the different types of
binaries that can contribute to the background. For example, they also keep track of
main-sequence (MS) stars and naked helium stars (nHe), and determine their contribu-
tion to the background as well.

The thin solid line in Figure 2.2 is due to binary WDs, and dominates the GWB above
10−4 Hz. It displays the spectral shape derived in the Sec. (2.1.1), where the transi-
tion between the static and spiral-in regimes happens around 10−4 Hz. The slope above
this frequency is slightly steeper than 2/3, which is due to the spectrum being a sum
of different spectra with varying chirp masses. Around 0.01 Hz, the spectrum displays
a peak: above this frequency, many binaries merge, which leads to the subsequent decline.

In first instance, we approximate this simulated GWB with a Ω ∝ f 2/3 background be-
tween 10−4 Hz and 10−2 Hz, through (2.15). To this end, we use the estimate6 ΩWD (1 mHz) =
3.57·10−12, obtained in [Farmer and Phinney, 2003] as model A. This is a good approxima-
tion to the simulation results, though slightly overestimating the background around 10−4

Hz. The resulting approximated GWB is plotted in Figure 2.3. The shaded green region
around this estimate corresponds to the uncertainty 1 ·10−12 ≲ ΩBWD(1 mHz) ≲ 6 ·10−12,
derived by the same authors.

5We follow a similar method in Sec. 2.5.
6It should be noted that ∼ 10% of this amplitude is due to nHe-WD pairs. Even though these

are strictly speaking not WD binaries, we keep their contribution when comparing to the BH and NS
components in Sec. 2.3.2.
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Figure 2.2: The GWB for model A in [Farmer and Phinney, 2003], described by the
dimensionless energy density (2.6) as function of the observed GW frequency. Solid line:
WD-WD pairs; dotted line: nHe-WD pairs; dashed line: MS-MS binaries, and dot-dash
line: WD-MS binaries. The total signal (the sum of all components) is given by the thick
solid line.

2.3.2 Relative amplitudes

Interestingly, the general consensus in the community is that the GWB from extragalactic
WD binaries will not be detectable by LISA [Boileau et al., 2022, Flauger et al., 2021,
Renzini et al., 2022]. The expectation is that, if LISA is able to measure a stochastic
GWB with the correct frequency dependence7, it will be produced by smBHs and NSs.
In this section we revisit this consensus, by comparing the simulation results from the
previous section against the estimates from Sec. 2.2, which we extrapolate to the LISA
band. The result can be seen in Figure 2.3, showing that the WD background is likely to
dominate. We investigate this prediction in more detail in the following sections.

Figure 2.3 shows that the GWB extrapolated8 from the current upper limit is almost
coincident with the predicted WD background9. This means that, even if the GWB in
the LVK frequency band is equal to the current upper limit, the background from WD
binaries is of equal importance as the one generated by BHs and NSs. However, if we base
ourselves on the current best estimates, the WD background is seen to be the dominant
one. This means that, should LISA detect a GWB originating from coalescing compact
binaries (i.e. with the dependence (2.15)), it will likely be dominated by the signal from
WD binaries. Such a detection is certainly possible: Figure 2.3 also shows the approxi-

7Potentially, LISA will also detect other cosmological backgrounds, like the ones discussed in 2.1.2.
8Recall the discussion from 2.2. We can expect the BH and NS background to closely follow the

predicted f2/3 shape, meaning that the extrapolation using (2.15) should be fairly accurate.
9An updated version of this Figure is given in Appendix B.1, as Figure B.1. See footnote 4
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Figure 2.3: Comparison of the different components that make up the GWB due to
coalescing compact binaries, described by (2.15). The dashed black line describes the
extrapolated upper limit on the background as derived in [LIGO Scientific Collaboration,
Virgo Collaboration, and KAGRA Collaboration et al., 2021]. The solid lines and shaded
regions are the estimates for the backgrounds generated by binary WDs, BHs and NSs
[Farmer and Phinney, 2003, LIGO Scientific Collaboration, Virgo Collaboration, and
KAGRA Collaboration et al., 2021]. The dot-dash line is a parabola that approximates
the sensity curve of the planned LISA mission, for comparison.

mate LISA sensitivity curve10.

This claim is backed up by a comparable conclusion in [Schneider et al., 2001], where
the extragalactic GWB is calculated for binary WDs, BHs, NSs and mixtures. They also
conclude that the extragalactic signal is dominated by WDs, with the runner-up being
NS-WD binaries. However, they estimated the signal to be larger, but their method is
critically analysed in [Farmer and Phinney, 2003] and arguments are given for the im-
proved estimate of the latter. Subsequently, their study was backed up by an improved
estimate for the extragalactic NS-WD background as well [Cooray, 2004], which again
was lower than the estimate for WDs, thus preserving the hierarchy orginally found in
[Schneider et al., 2001].

A more recent study [Liang et al., 2022] also shows evidence for the dominant contribution
of binary WDs. Here, scientists working around the planned TianQin detector (a project
similar to LISA) discuss the prospects of detecting a GWB in the low-frequency band. To
this end, they based themselves on [Rosado, 2011], from which they extracted estimates

10All the figures in this chapter show a parabolic approximation to the LISA sensitivity curve, based
on Figure 7 in [Renzini et al., 2022]. The purpose of this sensitivity curve is purely illustrative, in order
to have a rough idea of the detection capabilities of LISA. Therefore, a more advanced implementation
is not necessary.
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Figure 2.4: Comparison of different gravitational-wave backgrounds based on [Rosado,
2011]. The foreground is due to Galactic WD binaries, EDWD corresponds to extragalac-
tic WD binaries and BBH and BNS to binary BHs and NSs, respectively. The gray curve
is the sensitivity curve for the TianQin observatory with 1 year operation time. Figure
taken from [Liang et al., 2022].

for the background produced by different compact objects. Their results are shown in
Figure 2.4, and lead to similar conclusions as we draw here. Furthermore, this study
also acknowledges the background from [Farmer and Phinney, 2003], which leads them to
believe that the WD background dominates as well.

An order-of-magnitude argument

We now give another argument to estimate the relative amplitudes from the different
GWB components, to further motivate the dominant contribution of WDs. Observations
help us estimate the current merger rate R (in the entire Universe), for which order-of-
magnitude estimates11 can be found in Table 2.1. In the same table, we give a typical value
for the chirp mass of the different compact binaries. Furthermore, we can determine the
merger time at frequency f (i.e. the time until merger for a binary with orbital frequency
ν = f/2) from (2.5):

ν−8/3 ≈ 8K

3
tm(ν)

⇔ tm(f) ≈
3

8K

(
f

2

)−8/3

. (2.21)

Setting this merger time to 10 Gyr, and taking the typical values for the chirp mass in
Table 2.1 gives us the estimates for fmin that can be found in the same table. The merger

11We take representative values from [Collaboration et al., 2021, 2022] for the BH and NS merger
rates, and use that the present volume of the Universe is on the order of ∼ 1.2 · 104 Gpc3 (calculated
with astropy). The WD merger rate in the Milky Way is calculated in [Nelemans et al., 2001]. They
find 2.2 · 10−2 yr−1, for which we can make a rough extrapolation by using that the observable Universe
contains ∼ 1010 − 1011 galaxies [Conselice et al., 2016, Lauer et al., 2021].
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Table 2.1: Order-of-magnitude estimate for the merger rate and typical value for the chirp
mass, for three different compact binaries. For each of these chirp masses, the minimum
GW frequency in order to merge within 10 Gyr is given as well. Based on [Collaboration
et al., 2021, Nelemans et al., 2001]

Binary Merger rate [yr−1] chirp mass M [M⊙] fmin [Hz]

Black holes 2.8 · 105 20 2.7 · 10−6

Neutron stars 1.3 · 106 1.2 1.6 · 10−5

White dwarfs 108 − 109 0.5 2.7 · 10−5

Figure 2.5: Merger time as a function of GW frequency for the three different types of
compact binaries. Typical values for the chirp mass are taken from Table 2.1.

time as function of the GW frequency is plotted in Figure 2.5. Note that the expres-
sion (2.21) is an approximation, which breaks down at frequencies close to the merger
frequency. Therefore, the results in Figure 2.5 (and Figure 2.6) should be considered as
only correct at frequencies much smaller than the merger frequency.

We now argue that

N(f) ∝ R tm(f)/f ∝ RM−5/3f−11/3 . (2.22)

Indeed, this is most easily seen if we reverse the flow of time. Suppose binaries are created
at a birth rate R, all with the same orbital frequency νm (i.e. the frequency at which the
binary normally would merge). These systems evolve towards lower frequencies, according
to the time-reversed (2.5). The amount of time for a system to evolve to frequency ν0 is
equal to tm(ν0). This means that there are tm(ν0) · R binaries between frequency ν0 and
νm, all created in the timespan tm(ν0). Reversing the flow of time does not change the
number of systems, meaning that there are tm(ν0) ·R systems that will merge within the
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same timespan. If we now want the number of systems N(f) at a certain frequency f , we
find that this has to obey the proportionality (2.22) by taking the derivative.

The rate at which a binary loses orbital energy is given by12 [Peters and Mathews, 1963]

L =
32

5

G4

c5
(M1M2)

2(M1 +M2)

a5
. (2.23)

Using Kepler’s law, we find that this means that

L =
32(4π2)5/3

5

G7/3

c5
M10/3ν10/3 ,

or in terms of dimensionless quantities

L = 2.2 · 1038
(

M
M⊙

)10/3 ( ν

Hz

)10/3

J s−1 . (2.24)

We will now use the equivalent definition [Farmer and Phinney, 2003]

Ω(fr) =
1

ρcc3
frFfr , (2.25)

where F fr =
dF (fr)
dfr

is the specific flux received from an object with specific luminosity Lfe

at redshift z. It is given by

Ffr =
Lfe

4πdL(z)2

(
dfe
dfr

)
, (2.26)

where dL = (1+z)dM is the luminosity distance to redshift z, and dM is the proper motion
distance. The specific luminosity is given by

Lfe = L δ(fe − 2ν) , (2.27)

where the luminosity L is given by (2.24). For this argument, we assume that the redshift
distribution for the different compact binaries is similar, such that we can neglect the
factors depending on the redshift. Therefore, we find using f = 2ν

Ω ∝ N(f, t)Lf δ(fe − f) ∝ RM5/3f 2/3 . (2.28)

The right-hand side of this result is plotted in Figure 2.6 for the different compact bina-
ries. These results exhibit the expected Ω ∝ f 2/3 behaviour. Even though the absolute
amplitudes are not taken into account here, the relative amplitudes give a good idea of
the hierarchy. This indeed shows that the NS binaries probably give rise to the smallest
contribution, whereas the WD binaries can compete with the BHs, depending on the
merger rate. Therefore, it is not unthinkable that the GWB from WD binaries provides
the dominant contribution.

12In this expression we neglect contributions of non-zero eccentricity, which is a good approximation
as it turns out that binaries circularize in general.
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Figure 2.6: Order-of-magnitude estimates for the relative amplitude of Ω for the three
different types of compact binaries. The lines are calculated based on the values in Table
2.1. The solid green line uses a merger rate for WD binaries equal to 108 yr−1, and the
dashed line uses 109 yr−1.

2.4 The total background: a normalized approach

Motivated by the idea that binary WDs provide the dominant contribution to the GWB
from coalescing compact binaries in the LISA frequency band, we now ask the following
questions:

1. Does the WD contribution remain dominant if we change some of the parameters
that go into the model?

2. Can we disentangle the different components that make up the total GWB sourced
by compact coalescing binaries?

The first question has been partially investigated in [Farmer and Phinney, 2003] already,
as they also considered alternative models and studied the resulting backgrounds. We will
come back to their findings in Sec. 2.5, and look further into the influence of the cosmic
star-formation history (SFH). The second question is an important one, as a negative
answer implies that we cannot draw conclusions about one of the components, should we
detect a background Ω ∝ f 2/3: in that case, we can only study the combined population
of compact binaries. In the regime where all three components follow the f 2/3-behaviour
exactly, they cannot be disentangled. Indeed, the amplitude is simply the sum of the
amplitudes of the components.

However, this theoretical relation is not obeyed over the entire frequency range, as can
be seen in Figure 2.2. Therefore, we first investigate whether the decay around 0.01 Hz
and the transition to a steeper slope around 10−4 Hz fall within LISA detection limits.
We employ a relatively simple construction of the background, which we normalize to the
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value at 1 mHz found by [Farmer and Phinney, 2003], and investigate some toy models
for the WD population and their redshift distribution. This helps us to get a better
understanding of how these parameters influence the final result. Afterwards, we take a
more sophisticated approach in Sec. 2.5, where we no longer renormalize the final result.

2.4.1 Construction of the background

In this first instance, we consider a collection of systems with given {M, ν0, z}. For each
of these systems, we can then calculate an Ω ∝ f 2/3 line from 2ν0 up to some maximal
frequency, and add all of these lines together to form the total background. It should be
noted that this is an approximation to the actual background: systems with the same
initial parameters, but currently emitting at a different frequency are formed at different
times. Taking them all together in the Ω ∝ f 2/3 line implies that we assume a constant
star-formation rate (SFR). Indeed, if the latter is not constant, the time of formation
matters for the amplitude, and the background is not expected to follow the power-law
behaviour exactly.

The maximal frequency is determined per system by taking the minimum of two limiting
frequencies:

• On the one hand, we calculate νmax,1 by solving (2.5) with ∆t = t− t0 set equal to
the age of the Universe at redshift z. This equation does not have a solution when
∆t ≳ tm(2ν0) as determined by (2.21). This limiting frequency thus arises from the
requirement that the binary cannot have evolved for a time longer than the age of
the Universe.

• On the other hand, we calculate νmax,2 by using Kepler’s law (2.1) for the mini-
mum separation of the WD binary. This minimum separation is determined by the
component masses and the mass-radius relation for WDs [Verbunt and Rappaport,
1988]

R

R⊙
= 0.0114

[(
M

Mch

)−2/3

−
(
M

Mch

)2/3
]1/2

×

[
1 + 3.5

(
M

Mp

)−2/3

+

(
M

Mp

)−1
]−2/3

,

(2.29)
where Mch = 1.44M⊙ is the Chandrasekhar mass and Mp = 0.00057M⊙ is a con-
stant. Furthermore, we also need the formula [Eggleton, 1983]

amin =
R1

0.49

(
0.6 + q2/3 log

(
1 + q−1/3

))
(2.30)

for the minimal orbital separation before the onset of Roche-lobe overflow. In this
expression, q =M2/M1, and we assume q < 1.

If we now receive a flux from a large number of systems, spread throughout the Universe,
we can add all these contributions by introducing the specific luminosity density lfe ,
defined as dLfe(z) = lfe(z)dV (z). The quantity lfe has units of J s−1 Hz−1 Mpc−3, and
dV (z) is the comoving volume element at redshift z. Using that dV (z) = 4πdM(z)2dχ,
with χ(z) the proper motion distance, the specfic flux (2.26) is rewritten as

Ffr =

ˆ ∞

z=0

lfe(z)

(1 + z)2

(
dfe
dfr

)
dχ(z) , (2.31)
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We can discretize this integral over z, to find that

Ω(fr) ∝
∑
i

1

(1 + zi)4/3
M5/3f 2/3

r δ(f − (1 + z)fr)∆χ(zi) . (2.32)

for a suitable set of {zi}. So, the relative contribution to the total background of a binary
at redshift z with chirp mass M is determined by the weight

w(M, z) =
1

(1 + zi)4/3
M5/3∆χ(zi) . (2.33)

Once all the lines are added with their respective weight, the result is renormalized such
that Ω(1 mHz) = 3.57 ·10−12. In practice, we will restrict to z ≤ 8. We do so, as the SFR
that we use in Sec. 2.5 is determined up to z = 8. Furthermore, we show in Sec. 2.5.3
that contributions from higher redshifts are negligible anyway.

2.4.2 Influence of the population

We start by considering some toy models for the WD population. In this first instance,
we neglect any redshift distribution, and place all the binaries at redshift 0, in order to
find what influence the chirp mass distribution has on the GWB.

If we only include 1 chirp mass and one birth frequency ν0, we of course get a single
line following Ω ∝ f 2/3, by construction. We choose M = 0.52, corresponding to two
WDs of 0.6M⊙. The merger frequency as determined from Roche lobe overflow (νmax,2

in our earlier explanation) is equal to νmerge ≈ 19 mHz. Figure 2.7 shows what hap-
pens when we allow the birth frequency of the binaries - still all with the same chirp
mass - to vary. We start with 10 birth frequencies distributed uniformly in log10 ν be-
tween 10−5 Hz and ν0,max = 0.003 Hz (which is chosen in order to suit the illustration).
The background indeed becomes a sum of the different lines, and some properties be-
come apparent. First of all, the merger frequency is clearly indicated by the drop around
log10(2ν0,max/ Hz) ≈ −1.4. Furthermore, if the binary has f0 = 2ν0 ≳ 10−4 Hz, the binary
merges within a Hubble time, i.e. the line extends to the merger frequency. However, the
two lines corresponding to binaries born with lower frequencies only extend over a small
frequency range: (2.5) does not allow them to merge within a Hubble time, and due to
the strong ν-dependence of (2.2), the frequency of these binaries barely changes. This is
therefore part of the static regime.

Increasing the sample of birth frequencies to 1000 values results in a smooth curve, shown
in the bottom panel of Figure 2.7. On the one hand, this curve exhibits Ω ∝ f 2/3 be-
tween ν0,max and νmerge, by construction. Furthermore, the indicative yellow line follows a
power law Ω ∝ f 10/3, which was the prediction for the static regime. This shows that the
background approximately shows this behaviour indeed. In between there is a transition
region, where the exponent of the power law decreases.

We add a second type of binary, with masses 0.3M⊙, 0.9M⊙ and therefore νmerge ≈ 42
mHz. We allow it to have the same range of birth frequencies as the other, which leads
to the background in Figure 2.8. The background is now the sum of both components.
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Figure 2.7: Influence of the number of birth frequencies on the GWB, for binaries conisting
of two 0.6M⊙ WDs. (top) Ten samples for the birth frequency ν0 uniformly distributed
between 10−5 Hz and 3 mHz on a logarithmic scale. (bottom) The same interval for the
birth frequency, but now with 1000 samples. The yellow line is a comparative Ω ∝ f 10/3

line. The LISA sensitivity curve and extrapolations based on LIGO data are shown as
well.
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Figure 2.8: GWB resulting from two types of binaries, one with two 0.6M⊙ WDs, and one
with (0.3, 0.9)M⊙ components. The birth frequencies are uniformly distributed between
10−5 Hz and 3 mHz on a logarithmic scale. The LISA sensitivity curve and extrapolations
based on LIGO data are shown as well.

This becomes apparent above the merger frequency of the original binary, where the curve
displays a sharp drop due to all the binaries of the first type merging. The new type of
binaries that we added has a larger merger frequency, corresponding to the second drop
around 0.1 Hz. Therefore, adding more different types of binaries, all having different
merger frequencies, will smoothen out the drop at the high-frequency end of the GWB.
This can be seen in Figure 2.10 where we show the background resulting from a realistic
population of WD binaries.

The population synthesis

In order to get a more realistic prediction, we use the results of a population synthesis
(PS). The SeBa code [Nelemans et al., 2001, Portegies Zwart and Verbunt, 1996, Porte-
gies Zwart and Yungelson, 1998, Toonen et al., 2012] uses fast recipes to evolve a large
number ∼ 106 binary systems. The stars are initialised as zero-age main sequence (ZAMS)
stars, and are evolved for a Hubble time, taking into account effects of single and binary
evolution. The results of the code are then the end products of all these initial binaries,
which can be a binary or one or two single objects (i.e. the binary merges or detaches).
Results for double WD have been discussed in [Nelemans et al., 2001] and [Toonen et al.,
2012] and compared to observations to ensure they are not incompatible with them.

The results of the code have to be normalized: the initial binary population has to cor-
respond to an amount of star formation that can create this initial population. As an
example, [Toonen et al., 2012] found that the number of produced binaries per solar mass
star formation is equal to 6.9 · 10−3M−1

⊙ . The population that we use corresponds to
1.5 · 106M⊙ of star formation, and contains 14418 WD binaries. Therefore, the normal-
ization constant for this file is 9.6 · 10−3M−1

⊙ . The initial stellar binaries are evolved, and
when they become WD binaries their component masses and separation are registered.
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Figure 2.9: Summary of population synthesis results. (top) The chirp mass and birth
frequency of the binary. (bottom) The merger frequency due to Roche-lobe contact and
the time delay between the start of the simulation and the formation of the binary.
Population obtained from prof. Nelemans, obtained with the SeBa code.

The time of the birth (i.e. the time since the start of the simulation) of the WD binary
is registered as well, and the collection of all these parameters makes up our binary WD
population. We convert the separation at birth to a frequency with (2.1), and we calculate
the maximum orbital frequency before the onset of Roche-lobe overflow using (2.30). A
histogram summarizing the population is shown in Figure 2.9.

The background obtained from this population, with all sources located at z = 0, can
be seen in Figure 2.10. The drop at the high-frequency end is now smoothened out to
a gradual decline, due to the different merger frequencies of all the binaries. The WD
background only drops below that of the BHs above 0.1 Hz. Between 10−3−10−2 Hz, the
background approximately follows Ω ∝ f 2/3.

2.4.3 Influence of the redshift

So far, we have assumed that all binaries are located at z = 0. However, we want to
model the GWB from all extragalactic WD binaries, meaning that we need to include the
contribution from all redshifts. Again, we consider some toy models before we move on
to a more realistic setting.
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Figure 2.10: Background resulting from the PS results, all located at z = 0. The LISA
sensitivity curve and extrapolations based on LIGO data are shown as well.

We start again with one type of binaries, a pair of 0.6M⊙ WDs (M = 0.52), and birth fre-
quency distributed uniformly in log10 ν between 10−5 Hz and ν0,max = 0.003 Hz. Contrary
to Figure 2.7, we now place all the binaries at redshift z = 3, and the resulting background
is shown in Figure 2.11. The merger frequency is ≈ 19 mHz, but due to the redshift the
frequency at which the sharp drop occurs is fr,merge = 2 · 19 mHz /(1+3) ≈ 0.01 Hz. The
result is that the entire background is shifted to lower frequencies, compared to Figure
2.7 - this is of course exactly the effect of redshift. The decrease in amplitude is due to
the normalization at 1 mHz, though signals from larger redshifts reach us with a lower
amplitude as well.

Moving now to a distribution in redshifts, we consider the same type of binaries, but all
with birth frequency ν0 = 0.5 mHz. We assume a homogeneous distribution in the redshift
interval [0, 8]. The results are shown in Figure 2.12, for 10 samples in the redshift interval,
and 100 samples. The line resulting from the z = 0 contribution stretches between f ∼ 1
mHz and f ∼ 40 mHz. The top panel shows that summing over the redshift distribution
corresponds to summing over the redshifted versions of this line. The bottom panel shows
that, if our distribution is smoothened out, the effect of the redshift is to round of the drop
in frequency at both ends. The Ω ∝ f 2/3 behaviour now extends between the original
birth frequency, and maximally redshifted merger frequency13.

Finally, Figure 2.13 shows the results of our code where we used the PS results, and as-
sumed a homogeneous Universe for redshifts in the interval [0, 8]. We divided this redshift
interval in 20 equal bins, and took the average redshift in each bin as a representative
value. The bin then contributes according to (2.33). At each bin, we added the con-
tribution of the entire population. The end result is then normalized to correspond to

13For the binaries that we considered in this toy example, the merger time is on the order of ∼ 6 Myr.
This is a factor 100 smaller than the age of the Universe at redshift 8, meaning that the merger frequency
due to Roche-lobe overflow is always the relevant one, as opposed to νmax,1.
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Figure 2.11: Background resulting from binaries with a pair of 0.6M⊙ WDs, with varying
birth frequency ν0 and all located at z = 3. The LISA sensitivity curve and extrapolations
based on LIGO data are shown as well.

the value Ω(1 mHz) = 3.57 · 10−12 [Farmer and Phinney, 2003]. This result can be com-
pared to Figure 2.2. The qualitative features of both simulations are very similar: a peak
around ∼ 10 mHz, approximate Ω ∝ f 2/3 behaviour between ∼ 1 and ∼ 10 mHz, and a
transition from the static to the inspiral regime around ∼ 0.1 mHz. The decrease that
we find at the high-frequency end is less severe than in Figure 2.2, however: they found,
Ω(0.1 Hz) ≈ Ω(0.1 mHz).

The bottom panel of Figure 2.13 shows the sum of the different GWBs originating from
coalescing compact binaries. The error on this background is determined by standard er-
ror propagation. Throughout most of the frequency band where LISA is sensitive enough
to detect the background, the latter approximately follows Ω ∝ f 2/3. Only at the high-
frequency end, the drop due to merging WD binaries is visible. Therefore, this small
region is the only regime where the influence of one of the components (the WDs) could
be disentangled.

Of course, part of the agreement between our model and that of [Farmer and Phinney,
2003] is explained by the fact that we normalize our results to their value Ω(1 mHz) =
3.57 · 10−12. In the next section, we want to provide an independent prediction for the
background by taking all the constants and prefactors into account. Additionally, this
more elaborate approach also takes the cosmic SFH correctly into account.

2.5 The total background: an unnormalized approach

In this final section, we construct a prediction for the GWB from extragalactic WD
binaries without normalizing the results to the values found by [Farmer and Phinney,
2003]. We now also take the cosmic SFH into account, and change it in Sec. 2.5.4 to
investigate its effect on the background and its amplitude. The SFR we start from is
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Figure 2.12: Influence of a redshift distribution on the GWB, for binaries conisting of two
0.6M⊙ WDs. (top) Ten samples for the redshift z uniformly distributed in [0,8]. (bottom)
The same interval for the redshift, but now with 1000 samples. The LISA sensitivity
curve and extrapolations based on LIGO data are shown as well.
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Figure 2.13: (top) GWB due to WD binaries generated from the population synthesis
results, under the assumption of a homogeneous Universe in the redshfit interval z ∈ [0, 8].
The LISA sensitivity curve and extrapolations based on LIGO data are shown as well.
(bottom) Total GWB arising as the sum of the three components in the upper panel.
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given by [Madau and Dickinson, 2014]

ψ1(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M⊙ yr−1 Mpc−3 . (2.34)

This expression is plotted in Figure 2.18, and shows that the star-formation rate density
peaked approximately 3.5 Gyr after the Big Bang, at z ≈ 1.9.

2.5.1 Method

We base our method on Sec. 6 of [Farmer and Phinney, 2003]. From (2.31), a flux is
obtained by integrating the specific flux over a frequency bin [fr1 , fr2 ], giving

Ffr1→fr2
=

ˆ ∞

z=0

ˆ fr2 (1+z)

fr1 (1+z)

lfe
(1 + z)2

dfedχ(z) ,

where the relation fe = fr(1 + z) is used. This expression essentially shows that we inte-
grate over all the source frequencies that get redshifted to the correct observed frequency
bin.

We can now break the specific luminosity density down into its contributions from different
systems. We work with the results from the PS, described in Sec. 2.4.2. Using an index
k to denote the systems, together with (2.27), we find that the flux is given by

Ffr1→fr2
=

∑
k

ˆ ∞

z=0

dχ(z)

(1 + z)2

ˆ fr2 (1+z)

fr1 (1+z)

ˆ νmerge

ν0

nk(ν, z)Lk(ν)δ(fe − 2ν)dfedν .

where nk(ν, z) is the specific number density at redshift z. We use the δ-distribution to
get rid of the integral over fe to find

Ffr1→fr2
=

∑
k

ˆ ∞

z=0

dχ(z)

(1 + z)2

ˆ νmax

νmin

nk(ν, z)Lk(ν)dν . (2.35)

In this expression, νmin = max{ν0, fr1(1 + z)/2} and νmax = min{νmerge, fr2(1 + z)/2}.

We already argued that n(ν) ∝ ν−11/3 in Sec. 2.3.2, and have an expression for Lk(ν)
being (2.24). We can normalize the specific number density (with proportionality constant
A) by demanding that ˆ νmax

νmin

Aν−11/3dν = nbin , (2.36)

where nbin is the number density of systems with frequency between νmin and νmax. This
can be estimated by multiplying the SFR with the time it takes for the system to traverse
the frequency bin. Since the population synthesis results reflect the WD population for
every 1.5 · 106M⊙, we find

nbin(z) ≈
ψ(z + z∗)

1.5 · 106M⊙
·∆t(k; bin) . (2.37)

The timespan ∆t depends on the system through the chirp mass, and z∗ is an increase in
redshift to reflect the SFR when the system was born. Indeed, generally there is a time
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delay between the birth of the system and the time where it enters the correct bin. We
refer to this as the generic case, where νmin = fr1(1 + z)/2 and νmax = fr2(1 + z)/2. We
find

A =
8

3

1

ν
−8/3
min − ν

−8/3
max

ψ(z + z∗(∆t))

1.5 · 106M⊙
·∆t(k; bin) , (2.38)

or in the generic case

A ≈ 0.42
(1 + z)8/3

f
−8/3
r1 − f

−8/3
r2

ψ(z + z∗(∆t))

1.5 · 106M⊙
·∆t(k; bin) . (2.39)

The integral over ν in (2.35) can be carried out as well, as we have nk(ν, z)Lk(ν) ∝ ν−1/3,
and ˆ νmax

νmin

ν−1/3dν =
3

2

(
ν2/3max − ν

2/3
min

)
.

Therefore, we find

Ffr1→fr2
= 8.8 · 1038

∑
k

(
Mk

M⊙

)10/3 ˆ ∞

z=0

ν
2/3
max − ν

2/3
min

ν
−8/3
min − ν

−8/3
max

ψ(z; k; bin)

1.5 · 106M⊙
∆t(k; bin)

dχ(z)

(1 + z)2
J Hz−10/3

s
,

or in the generic case

Ffr1→fr2
= 8.7 · 1037

∑
k

(
Mk

M⊙

)10/3 ˆ ∞

z=0

f
2/3
r2 − f

2/3
r1

f
−8/3
r1 − f

−8/3
r2

ψ(k; bin)

1.5 · 106M⊙
∆t(k; bin)

dχ(z)

(1 + z)−4/3

J Hz−10/3

s
.

Generic case

We focus first on the generic case for simplicity. In this case, the factor with frequencies
can be taken out of the integral. We discretize this integral over z to find

Ffr1→fr2
=6.1 · 10−14 f

2/3
r2 − f

2/3
r1

f
−8/3
r1 − f

−8/3
r2

×
∑
k,i

(
Mk

M⊙

)10/3

(1 + zi)
4/3 ψ(k; bin; zi)

M⊙ yr−1 Mpc−3

∆t(k; bin; zi)

yr

∆χ(zi)

Mpc

kg

s3
. (2.40)

In this expression, we now treat the frequencies as being dimensionless, i.e. divided by
Hz. The change in prefactor is due to the conversion of Mpc2 to m2.

We focus now on the time interval ∆t and the shift in redshift. The time interval ∆t for
the generic case is determined by

∆t(k; bin; z) ≈ 2.4
(1 + z)−8/3

K(M)

(
f−8/3
r1

− f−8/3
r2

)
, (2.41)

which is found by solving (2.5). We will carry the (1+z)−8/3 factor to the final result, and
we see that the factor with frequencies drops out with respect to the prefactor of (2.40).
Furthermore, we use (2.4) and convert seconds to years to find

Ffr1→fr2
=1.3 · 10−15

(
f 2/3
r2

− f 2/3
r1

)
×

∑
k,i

(
Mk

M⊙

)5/3

(1 + zi)
−4/3 ψ(k; bin; zi)

M⊙ yr−1 Mpc−3

∆χ(zi)

Mpc

kg

s3
. (2.42)
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We also determine

τk =
3

8K(Mk)

(
ν
−8/3
0 − (fr1(1 + z)/2)−8/3

)
, (2.43)

i.e. the time the system takes to evolve from its birth frequency to the lower end of the
redshifted frequency bin14. The PS results give us a time t0,k for each system, reflecting
the delay between star formation and the formation of the WD binary at birth frequency
ν0. We determine z∗ such that z + z∗ corresponds to a time τk + t0,k before the time cor-
responding to z. In practice, we again restrict to z ∈ [0, 8], as (2.34) was determined on
this interval, and Sec. 2.5.3 shows that high-redshift contributions are negligible anyway.
Therefore, we only include the contribution of system k if τk+t0,k ≤ τ(z)−τ(z = 8), where
τ(z) is the age of the Universe at redshift z. The representative SFR is then ψ(z + z∗).

Finally, this results in an expression for Ω. We use that

Ω(fr) ≈
1

ρcc3
frFfr1→fr2

fr2 − fr1
≈ 4.3

kg s−3

frFfr1→fr2

fr2 − fr1
, (2.44)

which gives us that

Ω(fr) = 5.4 · 10−15fr
f
2/3
r2 − f

2/3
r1

fr2 − fr1

∑
k,i

(
Mk

M⊙

)5/3

(1 + zi)
−4/3

ψ(zi + z∗k,bin)

M⊙ yr−1 Mpc−3

∆χ(zi)

Mpc
.

(2.45)
The frequencies fr at which Ω is plotted are chosen such that there is 1 per bin, halfway
the bin on a logarithmic scale.

Other cases

In general, we have that

∆t =
3

8K(M)

(
ν
−8/3
min − ν−8/3

max

)
, (2.46)

which gives after discretizing the integral

Ffr1→fr2
=2.0 · 10−15

∑
k,i

(
Mk

M⊙

)5/3

×
(
ν2/3max − ν

2/3
min

)
(1 + zi)

−2 ψ(k; bin; zi)

M⊙ yr−1 Mpc−3

∆χ(zi)

Mpc

kg

s3
. (2.47)

This then leads to

Ω(fr) = 8.5 ·10−15fr
∑
k,i

(
Mk

M⊙

)5/3
ν
2/3
max − ν

2/3
min

fr2 − fr1
(1+zi)

−2 ψ(k; bin; zi)

M⊙ yr−1 Mpc−3

∆χ(zi)

Mpc
. (2.48)

Finally, we remark that

τk =
3

8K(M)

(
ν
−8/3
0 − ν

−8/3
min

)
, (2.49)

14Normally, ∆t(k; bin; z) ≪ τk,such that it does not matter which frequency in the bin we choose for τk.
This also means that we can assume the entire bin is populated, as we already assumed fr2(1+z)/2 < νmax.
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which in the birth frequency bin is equal to 0, meaning that z∗ is based on t0 only. For
the merger bin, both need to be taken into account again.

Computationally, we noted that mostly the calculation of z∗ increased the computing
time. The computation time could be lowered by performing an integration over cosmic
time instead of redshift, as originally done in [Farmer and Phinney, 2003]. However, this
then requires a calculation of ψ(t), the SFR as a function of cosmic time t.

2.5.2 Results

First, we benchmark our code by reproducing simple results. We select one random binary
system from our PS results,

(m1,m2, ν0, t0) = (0.76M⊙, 0.72M⊙, 1.6 · 10−4 Hz, 384 Myr) ,

and run the code with z = 0 and constant star formation rate ψ1(0) to see if it reproduces
Ω ∝ f 2/3 as expected, and Figure 2.14 shows that it does. Furthermore, the line indeed
extends from log10(2ν0) ≈ −3.5 to log10(2νmax) ≈ −1.3, where the limiting frequency is
determined by Roche-lobe overflow. This is appropriate, as the timescale for the binary
to cross this frequency interval is on the order of ∼ 0.1 Gyr. The amplitude15 is multiplied
with 14418 - the number of systems in the PS results - to give the same order of magnitude
as the full results. The bottom panel in Figure 2.14 shows that including higher redshifts
works as expected as well: we used 20 redshift bins in [0,8], and now the lowest frequency
present in the background is at log10(2ν0/9) ≈ −4.4. The highest frequency present is
slightly smaller than the one in the top panel: this is due to the fact that the first redshift
bin uses z = 0.4 as representative value, instead of z = 0 which is done in the upper panel.

We show the results of our program using the SFR (2.34) in Figure 2.15. This background
is constructed using 50 frequency bins, logarithmically spaced in the interval [10−5, 1] Hz.
Furthermore, we used 20 redshift bins in the interval [0,8]. We checked that the results
of our code did not depend on the number of bins. The errors shown with this prediction
correspond to the same relative errors given on the original prediction of [Farmer and
Phinney, 2003], for comparison. Again, we find a peak around 10 mHz, and the other
qualitative features of the curve seem similar to what we found in Sec. 2.4.

However, the amplitude of the GWB is higher than the predictions of [Farmer and Phin-
ney, 2003]. We find Ω(1 mHz) = 1.79 ·10−11, which is roughly a factor 5 larger than what
they found. A factor of this order can have several reasons. First of all, the SFH used in
[Farmer and Phinney, 2003] is overall roughly a factor 2 smaller than (2.34), at least for
the low redshifts that dominate the background (see Sec. 2.5.3). Secondly, they test their
models for the WD population by using their PS code to obtain a representative Galactic
population. Doing so, they find a local total space density of 9 · 10−3 pc−3. This can be
compared to [Nelemans et al., 2001], where they find this density to be 19 · 10−3 pc−3.

15It would be good to benchmark the amplitude as well. This could for example be done by calculating
(2.13) analytically for a relatively simple case, and implementing the same population in the code. We
leave this for future work.
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Figure 2.14: Benchmarking for the code described in Sec. 2.5.1. The top panel shows
the expected Ω ∝ f 2/3 behaviour for a single type of binaries located at z = 0, and with
constant SFR. The bottom panel shows the effect of adding redshift bins.
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As the latter used the SeBa code that we take results from as well, this can also explain
a factor 19/9 ≈ 2.1. Finally, we have already remarked on the need for a normalization
in the code in Sec. 2.4.2. The different normalizations presented in that section could
explain an additional factor 9.6/6.9 ≈ 1.4. Taking these arguments into account, we could
expect to find a GWB that is a factor ∼ 6 larger than what [Farmer and Phinney, 2003]
found. It must be noted, however, that [Farmer and Phinney, 2003] also take harmonic
contributions from eccentric orbits into account, which we neglected in our simulations.

Due to the larger amplitude, the total GWB covers a slightly larger frequency range in
which LISA can detect it. Furthermore, the peak and subsequent decay are now more
pronounced in the sensitivity region. The larger amplitude would imply an improved
chance of detecting the background in this frequency range. Given that the decay at high
frequencies is also more pronounced, this implies that the WD component could be more
confidently identified as well, as it is the one deviating from Ω ∝ f 2/3 in the LISA band.

We also investigate the contribution of the birth and merger frequency bins to the total
background. The reason is that excluding these allows us to only use the equations for
the generic case in Sec. 2.5.1, which make the code a bit faster and simpler. The results
are plotted in Figure 2.16. As expected, the contribution of birth frequency bins is at low
frequencies, and that of merger bins at high frequencies. In both cases, the contribution
is small in the LISA band ∼ 0.1 − 10 mHz. Below ≲ 10−4 Hz and above ≳ 0.1 Hz, the
contribution becomes significant, or even dominant. Increasing the number of frequency
bins would decrease the contribution further - though it also increases the computation
time.

2.5.3 Contribution of different redshifts

In practice, we will choose redshift bins in the interval z ∈ [0, 8], since the SFR (2.34) is
determined in this range [Madau and Dickinson, 2014]. At redshift 8, the Universe was
about 600 Myr old. A priori, it could be necessary to include higher redshifts as well,
because white dwarfs might have formed earlier. WDs have been found that are over
11 Gyr old [Kilic et al., 2012], and given that stars more massive than ≳ 3.5M⊙ have
main-sequence lifetimes shorter than this (see (1.2)), perhaps even older WDs exist.

However, Figure 2.17 shows that large redshifts barely contribute to the total GWB.
Indeed, ≳ 90% of the background is due to binaries with z ≲ 2.5, in the case of SFR
(2.34). This is due to the fact that the comoving volume related to high redshift bins is
relatively small. Therefore, we do not need to include redshifts beyond z = 8, as they will
contribute negligibly to the total GWB.

Furthermore, since we are interested in the background from extragalactic binaries, we
should in principle exclude the Milky Way in our redshift binning. However, since the
nearest galaxies are at redshifts close to zero, this effect will dissapear in our binning
procedure.
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Figure 2.15: (top) Green: the predicted GWB from extragalactic WD binaries as deter-
mined by the cosmic star-formation history (2.34), based on the method in Sec. 2.5.1.
The orange curve denotes the GWB that we found in Figure 2.13. The LISA sensitivity
curve and extrapolations based on LIGO data are shown for comparison. (bottom) Total
GWB arising as the sum of the three (green, blue, red) components in the upper panel.
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Figure 2.16: Contribution of the birth and merger frequency bins to the total background,
in the case of 50 frequency bins. The line shows the ratio of the full background to the
background that only considered contributions from the ”generic” case, as defined in Sec.
2.5.1. The dashed lines mark a 50% and 5% contribution.

Figure 2.17: Contribution of the different redshift bins at different frequencies grouped
in 10 frequency bins. The size of the rectangle represents the relative contribution. The
indicative redshift indicated in the legend is in the middle of the bin, and all have width
0.8. This figure shows that ≳ 90% of the background is due to binaries with z ≲ 2.5, in
the case of SFH (2.34).
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2.5.4 Influence of the star formation history

In this final section, we want to investigate what influence the SFH has on the background.
To this end, we consider three alternative SFR functions, which are purely hypothetical,
but highlight the ways the SFR could differ. These explorative models for the SFR are

ψ2(z) = 0.074
(1 + z)0.3

1 + [(1 + z)/2.9]3.2
M⊙ yr−1 Mpc−3 , (2.50)

ψ3(z) = 0.012
(1 + z)2.7

1 + [(1 + z)/2.9]3
M⊙ yr−1 Mpc−3 , (2.51)

ψ4(z) = 0.0064
(1 + z)2.7

1 + [(1 + z)/5]5.6
M⊙ yr−1 Mpc−3 . (2.52)

The first one increases the SFR at lower redshifts, whereas the second one corresponds to
a SFR that was much larger in the past. The final one shifts the peak of the SFR with
respect to (2.34), and is now located around z = 4. These different functions, together
with (2.34) are shown in Figure 2.18.

They are normalized such that the total mass (density) of stars ever formed (the time-
integral of the SFR) is equal to the one given by (2.34). Following [Farmer and Phinney,
2003], we use Ω⋆,tot to denote this total. It is calculated as [Madau and Dickinson, 2014]

Ω⋆,tot = (1−R)

ˆ τU

0

ψ(z)
dt

dz
dz , (2.53)

where τU ≈ 13.8 Gyr denotes the age of the Universe and R is the return fraction; the
mass fraction of each generation of stars that is put back into the interstellar and inter-
galactic medium. The return fraction depends on the inital mass function (IMF) of the
stellar population. We take the value R = 0.27, which corresponds to a Salpeter IMF,
and is the one used in [Madau and Dickinson, 2014] to find (2.34). This gives us that
Ω⋆,tot ≈ 5.9·108M⊙ Mpc−3. [Farmer and Phinney, 2003] found Ω⋆,tot = 5.0·108M⊙ Mpc−3,
using a different IMF with R = 0.42.

The GWBs that result from these different SFHs are shown in Figure 2.19, and repre-
sentative values are given in Table 2.2. As we have seen in Figure 2.17, the majority of
the background is determined by low redshifts. This conclusion does not change when we
alter the SFH, as shown by the figures in Appendix B.1. Therefore, it is expected that
the largest background is the one related to the SFH for which the SFR is the largest at
low redshifts. Decreasing the low-redshift contribution results in the overall GWB being
lower. Within the LISA sensitivity band, the background does not change significantly,
except near the peak. At high frequencies, the SFH in which most stars formed at low
redshift dominates, and the subsequent order is determined by the amplitude of the SFR
at z ≈ 0. At low frequencies, the order is reversed. It should be noted that the alternative
SFHs that we explored are not the most realistic ones, and therefore the variation of the
GWB for realistic SFHs is not expected to be very large. This conclusion was also drawn
in [Farmer and Phinney, 2003].
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Figure 2.18: Different star formation histories considered for the models. SFH1 corre-
sponds to (2.34), and is a realistic fit to observational data, obtained from [Madau and
Dickinson, 2014]. The other three are explorative models, defined in (2.50) - (2.52). The
normalization is chosen such that (2.53) is the same for all of them.

Figure 2.19: The GWB resulting from the different star-formation histories, as given by
(2.34) and (2.50)-(2.52). The LISA sensitivity curve is shown, for comparison.
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Table 2.2: Amplitude of the GWB at different frequencies, for the different SFHs that we
have considered. The reference value of [Farmer and Phinney, 2003] is also given, in the
bottom row. The largest value at each frequency is indicated in bold.

SFR Ω(0.1 mHz) Ω(1 mHz) Ω(10 mHz) Ω(0.1 Hz)

(2.34) 1.41 · 10−12 1.79 · 10−11 8.97 · 10−11 4.25 · 10−11

(2.50) 9.71 · 10−13 1.61 · 10−11 8.22 · 10−11 5.85 · 10−11

(2.51) 1.61 · 10−12 1.77 · 10−11 8.54 · 10−11 3.41 · 10−11

(2.52) 1.79 · 10−12 1.79 · 10−11 8.56 · 10−11 2.77 · 10−11

F&P ∼ 10−13 3.57 · 10−12 ∼ 10−11 ∼ 10−13





Chapter 3

Hypercompact Stellar Clusters

In this chapter, we work around science objective 2 (Sec. 1.3): ”Trace the origin, growth
and merger history of massive black holes across cosmic ages.” The formation history of
SMBHs is still fairly uncertain, and we need observations to constrain it further. When
SMBHs merge, they can receive a recoil kick in order to conserve the momentum that is
carried away by the gravitational waves. The distribution of these kicks provides infor-
mation on the merger history, as the kick velocity depends on the binary parameters. As
a result of such a kick, a HCSC can form. However, these have not been observed yet,
even though simulations predict hundreds of observable systems. In Sec. 3.1, we review
the basics of the recoil kick and some structural relations for HCSCs. Subsequently, we
review some observational predictions for these systems in Sec. 3.2. Furthermore, in Sec.
3.2.2 we motivate our choice to include smBHs in the models for HCSCs, which has not
been done so far. Sec. 3.3 reviews earlier work on the modelling of these clusters, and
we outline how we add smBHs in our method. Sec. 3.4 summarizes our overall findings,
which we apply in Sec. 3.5 to model two candidate clusters. This enables us to delineate
what parameter space could explain the observed properties of these systems.

3.1 Recoiling supermassive black holes

It is expected that the majority of galaxies harbor a SMBH in their nucleus. Therefore,
the merger of two galaxies is likely to produce a SMBH binary where the nuclei of both
galaxies collide. The heavy SMBHs sink to the center of the merging galaxies. Once
they approach each other to (typically) within a few pc, they start kicking out stars on
intersecting orbits via the gravitational slingshot effect [Merritt, 2006]. Therefore, the
forming binary tends to lower the density of stars around it. If it completely depletes the
reservoir of stars, the binary may stall at a separation which is not close enough for the
gravitational radiation to drive the merger to its end. This is known as the final parsec
problem, and in order to overcome it the reservoir of stars cannot be depleted. This is
known as loss-cone repopulation, and we will come back to this in Sec. 3.1.1.

Once this hurdle is overcome, gravitational radiation drives the inspiral. It can be shown
that the GWs carry away linear momentum, where the amount depends on the asymme-
try in the binary masses or spins. The majority of the radiation is emitted close to the
actual merger, and causes the remnant to experience a recoil kick in order to conserve
momentum [Bekenstein, 1973]. These recoil kicks can be on the order of several 100-1000

47
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km s−1, with the most extreme velocites arising from rapidly spinng BHs on eccentric
orbits [Campanelli et al., 2007, González et al., 2007]. As escape velocities of galaxies
are typically ≲ 2000 km s−1, the largest kicks kan cause the remnant to be ejected from
the galaxy. However, the more common case is that the kick does not exceed the escape
velocity, and the remnant is temporarily displaced from the center of the galaxy. [Merritt
et al., 2009]

The general idea in cosmology is that galaxies have formed hierarchically, meaning that
galaxies grew through mergers and accretion. Therefore, many of these recoiled remnants
should have formed over the age of the Universe. As the kick velocity depends on the
initial binary parameters, a determination of the kick velocity distribution provides infor-
mation about the properties of the SMBHs at merger. These properties are interesting, as
for example the spin distribution of SMBHs provides information on their formation his-
tory [Berti and Volonteri, 2008]. Furthermore, the observation of a recoiled SMBH would
provide direct confirmation that these objects indeed merge, which is a major assumption
underlying the LISA space mission.

As SMBH mergers are expected to happen in the nuclei of (colliding) galaxies, the binary
is surrounded by stars. Following the recoil kick, only the stars that are sufficiently close
to the remnant will remain bound and follow the recoiling SMBH as it is displaced from
the galactic center. The effects of this kick on the surrounding stellar population have
been first studied in [Komossa and Merritt, 2008, Merritt et al., 2009, O’Leary and Loeb,
2012], and more recently in [Akiba and Madigan, 2023]. These are the main references
for what follows.

When a SMBH of mass M• is kicked out of the galactic center with a kick velocity Vk,
most of the stars that remain bound lie within a radius

rk ≡
GM•

V 2
k

≈ 0.43

(
M•

108M⊙

)(
Vk

1000 km s−1

)−2

pc , (3.1)

which is a good estimate of the initial extent of the HCSC. This shows that these clusters
have initial sizes that can vary between ∼ 10−3 pc and several pc. The latter corresponds
to the typical scale of a globular cluster (GC) [Mau et al., 2019].

The SMBH also has a so-called influence radius

rinfl ≡ GM•

σ2
≈ 10.8

(
M•

108M⊙

)(
σ

200 km s−1

)−2

pc . (3.2)

The 1-dimensional velocity dispersion σ of the galactic bulge is related to the mass of the
central SMBH. This is reflected in the empirically determinedM−σ relation1 [McConnell
and Ma, 2013]

M•

108M⊙
= 2.1

(
σ

200 km s−1

)5.64

. (3.3)

1Note that we used a more recent version of this relation than the one used in [Merritt et al., 2009],
which was obtained in [Ferrarese and Ford, 2005]. Both versions of the M −σ relation are obtained from
mixed samples of spiral and elliptic galaxies.
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In the case that the kick is large enough for the cluster to displaced from the galaxy core
(Vk ≳ 0.4Vesc, where the latter is the escape velocity of the galaxy [Gualandris and Merritt,
2008]), rk is small compared to the influence radius. To this level of approximation, the
stars essentially move in the point-mass potential of the SMBH, both before and after the
kick. This allows us to calculate the post-kick distribution of stars from the distribution
before the merger: moving to the SMBH frame of reference, the orbits of the stars are
altered as if they receive an instantaneous kick Vk in the opposite direction of the recoiling
SMBH. [Merritt et al., 2009]

3.1.1 Stellar distribution

Before the kick, the stellar population is assumed to have a power law density profile

ρ(r) = ρ(r•)

(
r

r•

)−γ

, (3.4)

where r• is a normalization radius and the exponent is usually set to γ = 1.75. This is
more commonly known as the Bahcall-Wolf cusp [Bahcall and Wolf, 1976], which describes
the distribution of stars around a central SMBH. We will choose the normalization radius
so that the total stellar mass contained within a sphere of this radius is equal to twice
the mass of the central SMBH, i.e. M(r < r•) = 2M•. This radius is expected to be on
the order of rinfl.

After the recoil kick, the density profile is largely unchanged at radii r ≲ rk, but strongly
truncated beyond this. It is well described by the Dehnen profile

ρ(r) =
(3− γ)MD

4πr3D

(
r

rD

)−γ (
1 +

r

rD

)γ−4

(3.5)

for 1 ≲ γ ≲ 2. Here MD is the total stellar mass that is retained after the kick, and
rD = 2rk. This density profile is shown in Figure 3.1.

We thus need to know what mass in stars remains bound after the kick. [Merritt et al.,
2009] show that the bound mass Mb is given by

Mb

M•
= F1(γ)

(
rk
r•

)3−γ

, (3.6)

where F1(γ) is a form factor, which can be well approximated by

F1(γ) = 11.6γ−1.75 . (3.7)

It is clear that r• needs to be determined in order to use (3.6).

Determination of r•

We model some observational candidates in the Milky Way and its halo in Sec. 3.5.
Therefore, we will focus on SMBHs with masses smaller than that of Sgr A∗, which has
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Figure 3.1: Steady-state, spherically symmetrized density profiles of the bound population
after the kick for γ = (1, 1.5, 2). The dotted lines show the pre-kick densities; the dashed
blue lines are Dehnen model (3.5) fits. Figure taken from [Merritt et al., 2009].

a mass of ∼ 4 · 106M⊙ [Eckart and Genzel, 1997, et al., 2022, Ghez et al., 1998]. As
mentioned above, some loss-cone repopulation mechanism is required to overcome the
final parsec problem. For the SMBH mass range that we consider, collisional loss-cone
repopulation is considered in [Merritt et al., 2009] to give an estimate for the scale radius
r•. In this framework, depleted orbits can be repopulated by gravitational scattering
between stars, as the two-body relaxation time in the pre-kick nucleus is sufficiently short
for these SMBHs. They find that the pre-kick density can be approximated as

ρ(r) =

ρ•
(

r
r•

)−7/4

0 ≲ r ≲ r•

ρ• r• ≲ r ≲ rinfl
, (3.8)

where r• ≈ 0.2rinfl. If we now use (3.6), we find that

Mb

M•
≈ 1.3

(
GM•

rinflV 2
k

)5/4(
ρ0r

3
infl

M•

)
≈

(
σ

Vk

)5/2(
Mcore

M•

)
,

where we defined Mcore ≡ ρ0r
3
infl. The ratio Mcore/M• is of order unity2, such that

Mb

M•
≈

(
σ

Vk

)5/2

≈ 0.02

(
σ

200 km s−1

)5/2(
Vk

1000 km s−1

)−5/2

, (3.9)

2This statement is made in Merritt et al. [2009]. However, this can be calculated exactly given (3.8),
and we find that the ratio is ≈ 33. This also leads to the prefactor in (3.9) being 0.58. We will, however,
stick to the original prefactors, but it shows the approximate nature of these estimates.
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Combining (3.3) and (3.9), we find

M•

105M⊙
≈ 6.5

(
Vk

1000 km s−1

)1.73(
Mb

1000M⊙

)0.69

, (3.10)

which we will use in Sec. 3.5.

Post-kick evolution

Shortly after the kick, the stellar distribution is well described by the Dehnen density
profile (3.5). The stellar population will now continue to evolve via two-body relaxation.
Therefore, gravitational scattering will drive stars into the tidal distruption sphere of the
SMBH, with radius

RTDE =

(
M•

M∗

)1/3

R∗ . (3.11)

However, - assuming the kick moved the HCSC out of the galactic nucleus - there is no
reservoir of stars at the sphere of influence to replace those that are lost. This means
that the density of stars in the HCSC will steadily drop. The rate at which this happens
is determined by the rate of tidal distruption events. Significant loss of mass within 109

years is estimated to be only relevant when [Merritt et al., 2009](
Vk

1000 km s−1

)3/2

≳
M•

107M⊙
. (3.12)

The two different cases are illustrated in Figure 3.2. These density profiles are obtained
through a Fokker-Planck equation, to which we come back in Sec. 3.3.

3.2 Observational characteristics

Having described some of the basic properties of a HCSC, we now move on to the ques-
tion: can we see these putative systems? So far, no definite detection has been made. We
review some observational aspects of HCSCs in Sec. 3.2.1, and consider the addition of a
smBH-component to the cluster in Sec. 3.2.2. We later focus on some specific candidates
in Sec. 3.5.

3.2.1 Distinguishing HCSCs from other systems

We have already seen that the size of a HCSC is on the order of that of a GC or smaller.
Furthermore, the luminosity is expected to be similar or smaller as well. Therefore, it is
unclear at first how we can hope to distinguish these two different systems. Luckily, a
major difference is expected in the velocity dispersion of the stars.

The Keplerian velocity of an object moving in the point-mass potential of the SMBH at
radius r is given by

vK =

√
GM•

r
≈ 21

(
M•

105M⊙

)1/2(
r

1 pc

)−1/2

km s−1 . (3.13)
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Figure 3.2: Evolution of the (left) density profile and (right) loss rate, for two different
HCSCs. The top row shows (M•,Mb) = (3 · 106, 7 · 103)M⊙, and the bottom row shows
(M•,Mb) = (3 · 107, 1 · 105)M⊙. In both cases, Vk = 103 km s−1. The different lines
correspond to time increments of 1 Gyr. [Merritt et al., 2009]

At rk, this is simply equal to Vk, so that the characteristic speed of the stars scales as Vk.
Therefore, we define a new form factor3 F3(γ) such that

σobs = F3(γ)Vk , (3.14)

where σobs is the measured velocity dispersion of the stellar population after the kick.
This implies that, if γ is known - or the dependence of F3 on γ is weak - the kick velocity
can be extracted by measuring the velocity dispersion of the stars in the HCSC. This form
factor is estimated in [Merritt et al., 2009] as

lnF3 = −2.17 + 0.56γ . (3.15)

Therefore, assuming the Bahcall-Wolf cusp, we find that

σobs ≈ 0.30Vk . (3.16)

Therefore, we expect velocity dispersions of HCSCs to be on the order of O(10)−O(102)
km s−1 for typical systems and kicks. This is significantly higher than it is for GCs, where
it is 1 or 2 orders of magnitudes lower.

There are more signatures that could signal a HCSC candidate. For example, they can
have a large velocity offset with respect to other objects in their local environment. Addi-
tionally, TDE flares in star clusters [Komossa and Merritt, 2008] can indicate the presence

3This one is called F3 for consistency with [Merritt et al., 2009], where another form factor F2 is
defined as well.
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of a SMBH. Furthermore, gas can remain bound to the central SMBH as well. This gas
can be accreted on the timescale of several million years, causing the recoiled SMBH to be
seen as a short-lived active galactic nucleus (AGN) [O’Leary and Loeb, 2012]. Afterwards,
the SMBH will only be visible if it passes through a gas-rich region. AGNs with a spatial
offset from the center and / or Doppler-shifted broad emission lines have already been
detected, which could indicate that the central SMBH has received a kick (e.g. [Hogg
et al., 2021, Komossa et al., 2008]). However, the SMBH is not always accreting, and
alternate explanations are difficult to rule out. [Akiba and Madigan, 2023]

Even though HCSCs may resemble GCs or ultra-compact dwarf galaxies (UCDs), they
can be distinguished by either their larger velocity dispersion or greater compactness.
Figure 3.3 shows the parameter space for HCSCs under the model we considered in Sec.
3.1.1 (blue hatched area), and compares it to GCs and UCDs. The effective radius reff is
a measure of the scale of the HCSC, and is defined as the radius that contains one-half
of the stellar mass in projection. The figure shows that, for a large part of the parameter
space at least, HCSCs can be distinguished from these mimickers.

The colours of HCSCs have already been studied extensively as well [Lena et al., 2020,
Merritt et al., 2009]. At a given time, the luminosity of the HCSC will be dominated by
red giants, but due to the contribution of the main-sequence stars the overall colours of
the cluster will be bluer than those of individual giants. Also, as the stars likely origi-
nated in the galactic center, the metallicity is likely to be larger than that of a typical
low-metallicity GC. They also should appear redder than low-metallicity GCs with com-
parable ages ≳ 1Gyr.

So, HCSCs show distinct features that allow for the identification of their nature. Esti-
mates have been made of the number of systems that we should be able to see. Using
over 1000 merger tree histories of the Milky Way, [O’Leary and Loeb, 2009] estimated
that ≳ 100 BHs with M• ≳ 104M⊙ should be in the halo today, surrounded by com-
pact star clusters that are about 1% of the BH mass. Later, they performed performed
a systematic search for candidates in the Sloan Digital Sky Survey, and identified ∼ 100
photometric candidates, that require follow-up spectroscopy to accurately determine their
nature [O’Leary and Loeb, 2012]. However, an all-sky search of the Milky Way halo re-
quires enormous amounts of observation time. Therefore, it may be advantageous to look
for HCSCs in neighbouring galaxies. As an example, around 100 HCSCs should be ob-
servable in the Virgo cluster, of which only a few may be bright enough to confidently
confirm their nature though [Merritt et al., 2009].

3.2.2 The addition of a smBH component

As outlined in the previous sections, there is a good idea of what these putative HCSCs
should look like. However, so far all of this research is based on modelling of the stellar
population and gas. We argue in this section that it could be essential to include a popu-
lation of compact remnants in these models as well, as it can significantly alter the scale
of the cluster. We specifically consider a population of smBHs, and describe models in
Sec. 3.3 that we apply to some observational candidates in Sec. 3.5.
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Figure 3.3: (left) Effective radius and (right) observed velocity dispersion against bound
stellar mass for HCSCs. The blue hatched area shows the parameter space based on
the collisional loss-cone repopulation model (as discussed in Sec. 3.1.1). Solid lines
extend to a maximum reff based on the assumption that Vk ≥ 4.5σ (escape from the
galaxy) while dashed lines correspond to the weaker condition Vk ≥ 2σ (escape from
the galaxy core). HCSCs to the left of the dash-dotted (magenta) line are expected to
expand appreciably over their lifetime (see (3.12)). Data points are from [Forbes et al.,
2008]: filled circles correspond to elliptical galaxies, open circles to UCDs, and stars to
GCs. The red hatched area corresponds to an alternative loss-cone repopulation model
for M• ≳ 107M⊙. A treatment, as well as a description of the other lines in the figures,
can be found in [Merritt et al., 2009].
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Earlier work on GCs has shown that a population of smBHs can significantly increase
the scale4 of the cluster [Mackey et al., 2008, Merritt et al., 2004]. The orbits of the
smBHs decay due to dynamical friction, so that they sink to the cluster center, heating
the stellar population and turning a cusp into a core5. The simulations of [Mackey et al.,
2008] show that core expansion is only induced when the smBH population in the cluster
has accumulated in a sufficiently dense central subsystem that smBH binaries are created.
These binaries are the catalyst for core expansion, as the interactions of the binaries lead
to smBH scattering. The time of formation of the first smBH binaries is on the order of
half a Gyr, but is very sensitive to the natal recoil kicks that the smBHs receive [Atri
et al., 2019, Jonker and Nelemans, 2004]. Once binaries form and expansion begins, the
rate is dependent on the number of smBHs. The rate of expansion is also expected to
decrease with time, as the core expands and smBHs get ejected, resulting in a decreasing
interaction rate.
The simulations of [Mackey et al., 2008] also show that this effect of core heating cannot
be mimicked by a retained population of e.g. NSs. The presence of a smBH population
can be observationally tested, as they may act as X-ray and / or GW sources. Further-
more, the smBHs should increase the velocity dispersion of the stars.

Observational support for this idea can be found in e.g. [Gieles et al., 2021]. The paper
considers Palomar 5, one of the sparsest clusters in the Galactic Halo: it is unusually
large, with a half-light radius on the order of 20 pc, and a mass on the order of 104M⊙.
Furthermore, the cluster shows tidal tails. With N -body simulations, the authors show
that both features can be explained if there is a smBH population present6, about 20%
of the present-day cluster mass. It probably formed with a smaller smBH fraction of a
few percent, but stars were lost at a higher rate than smBHs, increasing the fraction.
Their best-fitting model had an initial mass of ∼ 105M⊙ which means that the cluster
has lost over 90% of its mass today. The present smBH population consists of 124 smBHs
with an average mass of 17.2M⊙. This corresponds to a BH fraction that is too large for
what one would expect from a canonical stellar initial mass function, and is the result
of an efficient loss of stars, while the smBHs are largely retained as they reside at the
center. Their smBH hypothesis is further supported by the fact that the predicted and
observed velocity dispersion agree (both on the order of ∼ 550 m s−1), and that their
models without a smBH population require a large degree of fine-tuning.

So, it seems likely that a smBH population can accelerate the expansion of a GC. There-
fore, we want to include smBHs in the simulations of HCSCs as well, and see if a similar
effect is obtained. It should be noted that simulations show that a central intermediate-
mass BH can already drive cluster expansion [Baumgardt et al., 2004], but we want to
investigate whether the addition of a smBH population can drive the expansion to even
higher rates. We show that this is indeed the case in Sec. 3.4. Figure 3.4 shows the effec-

4[Mackey et al., 2008] show that mass-loss due to rapid stellar evolution in a cluster which is mass-
segregated or otherwise centrally concentrated can also drive expansion of a GC. This process operates
only over the first ∼ 100 yr of the cluster’s life, after which the smBH heating takes over.

5A cusp means that the density steeply increases towards the center of a star / dark matter cluster,
whereas a core refers to a nearly constant density at the center. Observations and computer simulations
do not agree very well on whether e.g. dark matter is distributed along a core or cusp in the inner part
of galaxies, which is known as the core/cusp problem (see e.g. [De Blok, 2010]).

6For clarity: the authors do not model a HCSC, i.e. they do not consider a central massive BH.
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Figure 3.4: The influence of a smBH population on the half-light radius of a HCSC with
M• = 105M⊙ and Mb = 1000M⊙, as function of time. The blue line corresponds to an
added population of 20 smBHs of 10M⊙, whereas the orange line does not include such a
population. This shows that a smBH population can indeed accelerate the expansion of
a HCSC.

tive radius, a measure of the scale of the cluster, as a function of time for a HCSC with
M• = 105M⊙ and Mb = 1000M⊙, with and without the inclusion of a smBH population.
We come back to this in more detail in Sec. 3.4.

Observational relevance

Over the recent years, a number of sparse, old, faint stellar clusters have been discov-
ered, e.g. [Gieles et al., 2021, Hamren et al., 2013, Kim et al., 2016, Mau et al., 2019,
2020]. Their sizes are comparable to those of GCs, but their luminosities can be hundreds
of times fainter. Estimates have been made for their evaporation timescales, i.e. the
timescale over which star escape the system due to two-body relaxation [Koposov et al.,
2007, Meylan and Heggie, 1997], and have found to be as low as ∼ 3 Gyr [Mau et al.,
2020] or even ∼ 600 Myr [Kim et al., 2016]. These timescales are short compared to their
ages, estimated as ∼ 10 Gyr, meaning that these clusters cannot have persisted in their
current state throughout their lives.

A possible explanation would be that there is a large influx of these systems, but this
is not observed. Currently, it is thought that a large portion of these faint clusters are
accreted with merger events in the formation of the Milky Way [Massari et al., 2019].

However, the presence of a central SMBH can increase the evaporation timescale signifi-
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cantly. Following [Bahcall and Wolf, 1976], the relaxation timescale of a HCSC is

tR =
3(2πσ2)3/2

32π2G2m2
∗n∗ ln Λ

, (3.17)

which depends on the average stellar mass m⋆, the number density of stars n∗ at rinfl
and the so-called Coulomb logarithm ln Λ, to which we come back in Sec. 3.3.2. As σ
is expected to scale as the Keplerian velocity (3.13), we find that this relaxation time is

expected to scale as tR ∝M
3/2
• , assuming the other parameters remain fixed. Assuming a

SMBH mass of M• = 105M⊙, and taking some typical values σ ∼ 10 km s−1, m⋆ ∼ 1M⊙,
n⋆ ∼ 100 pc−3 and lnΛ ∼ 10 (see Sec. 3.3.2 and 3.4), we find that that tR ∼ 8 Gyr,
which is an order of magnitude larger than the values in the previous paragraph. The
evaporation timescale is about 10-100 times this relaxation timescale, meaning that the
former also increases by an order of magnitude.

The conclusion is that the presence of a central SMBH in these clusters could explain their
observational properties, as it would allow for a longer evaporation timescale compared
to the case where the SMBH is absent. However, the effective radius of HCSCs with a
SMBH this massive normally does not become much larger than ≳ 1 pc, which does not
agree with the observed sizes of these faint halo clusters. However, as Figure 3.4 shows,
the addition of a smBH component can increase the expansion of the HCSC, such that
its size does match observations. A smBH population therefore allows us to cover a much
larger parameter space for HCSCs, which is now large enough that it could potentially
provide a realistic model for some of these faint halo clusters.

A determination of the velocity dispersion of these faint halo clusters could shed a light
on their nature, as GCs have expected velocity dispersions ≲ 1 km s−1, but as argued
above HCSCs can have a velocity dispersion that is an order of magnitude larger.

3.3 Modelling

In this section, we briefly review N -body (Sec. 3.3.1) and Fokker-Planck (Sec. 3.3.2)
simulations, the main two ways to model these clusters. Our simulation tool, PhaseFlow,
is based on the latter, and is discussed in Sec. 3.3.3. We discuss in detail how we add the
influence of a smBH population. The results are discussed in Sec. 3.4. Unless otherwise
stated, most of the material in Sec. 3.3.1 and 3.3.2 can be found in [O’Leary and Loeb,
2012].

3.3.1 N-body simulations

Perhaps the most sensible thing to do when modelling a cluster is to keep track of the
position and velocity of every single star, and use the equations of motion to determine
the time evolution of the system. These are called N -body simulations, and have been
used extensively to model GCs [Giersz and Heggie, 1996, Mackey et al., 2008] and HCSCs
[Akiba and Madigan, 2023, Baumgardt et al., 2004, O’Leary and Loeb, 2012]. However,
this requires keeping track of the gravitational forces between every pair of stars, meaning



58 Chapter 3. Hypercompact Stellar Clusters

that the computational costs increase quadratically with increasing number of stars.

The N -body simulations of [O’Leary and Loeb, 2012] considered a Bahcall-Wolf cusp
around a 104M⊙ SMBH. The number of stars considered was such that the total stellar
mass in the cusp equals twice that of the SMBH. They considered models where all stars
have the same mass, as well as models with more realistic mass functions. Using a kick
velocity of ∼ 100 km s−1, they find that approximately 600 M⊙ of stars remain bound to
the SMBH immediately after the kick. This is comparable to what we find using (3.10).
They find that the number of stars decreases according to N∗(t) ∝ t−1/2 after ∼ 107 yr.
Approximately 40% of the stars are ejected from the cluster and another 40% of the stars
are tidally disrupted by the BH. The cluster also begins to expand: they find that radii
that enclose a fixed number of stars scale as rN ∝ t2/3.

After evolving their simulations for ∼ 10 Gyr, they find that the distribution of stars
is well described by a power-law density profile with γ ≲ 2.15 (see Figure 3.5). Regu-
lar relaxation seems to determine the shape and the expansion of the cluster, whereas
strong encounters between stars and tidal distruption event (TDE)s from resonant relax-
ation determine the final number of stars in the cluster. They argue that the effects of
WDs and NSs should be comparable to those of stars, and therefore do not account for
them separately. However, they point out that smBHs could have a significant influence
on the evolution of the cluster, although they have not included them in their simulations.

More recently, [Akiba and Madigan, 2023] have used N -body simulations to derive post-
kick surface density and velocity maps of HCSCs to highlight what influence the kick has
on the star distribution around the recoiling SMBH.

3.3.2 Fokker-Planck equation

The disadvantage of N -body simulations is their enormous computational cost: for ex-
ample, a typical simulation from [O’Leary and Loeb, 2012] took up to one month on a
single core of the Odyssey Cluster at Harvard University. Their simulations focussed on
a 104M⊙ SMBH, but as increasing the BH mass would also increase the number of stars
that remain bound, simulations for more massive BHs would take even longer. In order
to overcome this problem, approximate methods have been developed as well.

One of the options is to consider the evolution of a distribution function f(E) of stars, on
which we can make some assumptions. Some of the simplifications that can be made are
the assumption of isotropy, or averaging this distribution function over an orbit. [Bahcall
and Wolf, 1976, 1977] derived a Fokker-Planck (FP) equation that describes the diffusion
of stars by gravitational scattering in the gravitational well of a central SMBH:

∂g(x, τ)

∂τ
= −x5/2 ∂

∂x
Q(x)−Rlc(x) . (3.18)

In this equation, x, τ are dimensionless quantities defined as x = −E/(m∗σ
2), where m∗

is the average stellar mass, E is the orbital energy and τ = t/tR (with tR the relaxation
time (3.17) of the cluster). The function g(x, τ) is the dimensionless distribution function
of stars, defined as g(x, τ) = [(2πσ2)3/2n−1

∗ ]f(E). Q(x) is the rate at which stars flow to
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Figure 3.5: Total projected mass in stars within a distance r of a SMBH withM• = 104M⊙
after ∼ 10 Gyr. The long-dashed red line corresponds to a stellar population with a
single mass, whereas the solid black line corresponds to a more realistic mass function.
The short-dashed green line and dotted blue line correspond to results of Fokker-Planck
simulations: the former does not include the sinks (3.24) and (3.25), and is rescaled to
have the same half-mass radius as the N -body simulations, whereas the latter includes
these sinks and is not rescaled. Figure taken from [O’Leary and Loeb, 2012]
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higher energies, and Rlc(x) is the tidal disruption rate of stars that diffuse into the SMBH
loss cone7 via regular two-body relaxation. They are given by

Q(x) =

ˆ xTDE

−∞
dy [max(x, y)]−3/2

(
g(x)

∂g(y)

∂y
− g(y)

∂g(x)

∂x

)
, (3.19)

Rlc(x) ≈
2g(x)2

ln (x/xTDE)
, (3.20)

where xTDE ≈ (M•/m∗)
−1/3rinfl/R∗ is the maximum specific energy of a star before tidal

disruption.

Some assumptions are made to derive (3.18). First of all, it is assumed that the distri-
bution of stars is adequately represented by a single-particle distribution function that is
spherically symmetric in space and approximately isotropic in velocity space. Further-
more, the average stellar mass is assumed small compared to M•. Finally

8, it is assumed
that the predominantly important collisions are due to small-angle scattering.

The Coulomb logarithm

One of the parameters in the FP equation (3.18) is the Coulomb logarithm lnΛ, which
enters through (3.17). This parameter is somewhat ambiguous, as it arises from a cutoff
in an integral [Bahcall and Wolf, 1976]. At some point, in the calculation of the rate
R(E, t) at which stars are scattered into a region of energy greater than E by two-particle
collisions, they find that

R(E, t) ∝
ˆ

dEa

|Ea − E|
H(Ea) , (3.21)

where E is minus the stellar energy per unit mass (and Ea is this quantity for star a) and
H is a certain function. This integral formally diverges both when Ea → E and when
Ea → ∞. The solution is to introduce a cutoff for both cases, defining

∆min ≡ Ea,min − E ,

∆max ≡ Ea,max − E ≈ Emax .

These cutoffs must be so that all the physically relevant cases are included in the integral,
but the divergences at the singularity and infinity are no longer included. The lower
limit cutoff results from the requirement that the collision time at the maximum effective
impact parameter, bmax, is smaller than the orbital period of the bound star. The upper
limit cutoff is chosen such that the small-angle approximation remains valid, and therefore
corresponds to a minimum impact parameter bmin. [Bahcall and Wolf, 1976] estimate that

∆min ∼ m∗

M•
E ,

Emax ∼ E ,

7The SMBH loss cone is roughly speaking the collection of orbits that end up in the capture sphere
of the SMBH. See [Merritt, 2013] for a comprehensive explanation.

8We note that in the original paper [Bahcall and Wolf, 1976] it is also assumed that M• is smalled
compared to the cluster core mass. This does not seem to be fullfilled in the case of HCSCs: typically
Mb ≪ M•. Dr. Eugene Vasiliev has pointed out that this should not be a problem, and possible
quantitative differences are accounted for in the PhaseFlow code that we use (see Sec. 3.3.3).
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such that they can approximate the integral in (3.21) as
ˆ

dEa

|Ea − E|
H(Ea) ≈ 2H(E) lnΛ ,

where

lnΛ = ln

(
M•

m∗

)
(3.22)

is the so-called Coulomb logarithm.

The quantity (3.22) is called the Coulomb logarithm because it first appeared in a similar
problem in plasma physics, concerning the scattering of charged particles under influence
of mutual Coulomb forces. Similarly, one needs to approximate an integral over the impact
parameter b of the form ˆ

db

b
≈ ln Λ ,

where the cutoff on both sides is now determined by a minimal and maximal effective
impact parameter. It is custom to take the lower cutoff to correspond to the impact pa-
rameter of a strong encounter that would lead to 90◦ deflection, and the maximal impact
parameter on the order of the scale of the system. The maximum impact parameter is
also often taken to be the Debye shielding radius [Krommes, 2019].

The Coulomb logarithm already appeared earlier in the modelling of GCs. In this case,
it is usually taken of the form

lnΛ ≈ ln γN , (3.23)

where γ ≈ 0.4 for equal mass stars [Spitzer and Hart, 1971] and γ ≈ 0.02 for a mass spec-
trum [Giersz and Heggie, 1996]. The same formula has also been used when modelling
stars around a SMBH, in the case that the number of stars is on the order of 105 − 106

[Vasiliev et al., 2015]. In this case, the formulae (3.22) and (3.23) give comparable results.

So, the Coulomb logarithm clearly reflects some of the assumptions that are made in the
process, and is not precisely defined. This means that it is hard to confidently assign it a
value. However, as the limiting cutoffs appear in a logarithm, the final value is not very
sensitive to small changes in the cutoff. We will however use the formula (3.22) in what
follows, as recent papers take this approach as well [O’Leary and Loeb, 2012, Vasiliev,
2017] and it is the one derived for the case of a central SMBH.

To take the smBH population into account, we extend (3.22) to represent the average mass
of stars and smBHs, as the latter also partake in the gravitational scattering. It should
be noted that changing the Coulomb logarithm affects the observables that we consider
in the next sections (see Figure 3.11). For the models that we consider, ln Λ ∼ 11.

Two additional sink terms

Over the years, increasing layers of complexity have been added to the one-dimensional
FP equation (3.18). [O’Leary and Loeb, 2012] complemented their N -body simulations
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(discussed in Sec. 3.3.1) with FP simulations based on (3.18) with the addition of two
more sink terms.

First of all, they include a sink related to the tidal disruption rate of stars that fall into
the SMBH loss cone due to resonant relaxation, given by [Hopman and Alexander, 2006]

Rrr(x) ≈ χ
g(x)

τrr(x)
. (3.24)

Resonant relaxation is the efficient randomization of angular momenta of stars due to the
coherent addition of torques between stars. This process can take place on a timescale
much shorter than the regular relaxation time, and can lead to an enhanced rate of TDEs.
The resonant relaxation timescale can be approximated as τrr(x) ≈ 0.0278x3/2, and χ is
an efficiency factor of order unity.

Secondly, they add the rate at which stars are ejected from the cluster owing to strong
encounters

Rss(x) =
3

2 lnΛ
x5/2

g(x)

(x− x0)2

ˆ
g(y)dy

(y + x− x0)3/2
, (3.25)

based on [Lin and Tremaine, 1980]. In this expression, x0 ≲ 0 is the negative specific
energy required to be ejected. Note that this expression is suppressed by the Coulomb
logarithm with respect to the rest of the equation. As a consequence, this sink term turns
out to be less important.

Without the additional sink Rrr, [O’Leary and Loeb, 2012] find that the FP simulations
give little mass loss, whereas their N -body simulations indicated that only ∼ 10% of the
stars remained bound. Regardless of the inclusion of these two terms, however, the sim-
ulations agree on the shape and slope of the density profile of the recoiled clusters. The
most suitable parameter value for χ is found to be 0.8. The density profile that results
from the FP simulations is also shown in Figure 3.5, both for the case where they include
resonant relaxation and the case where they exclude it. It should be noted that the FP
simulation does not reproduce the density, as found with the N -body simulations, at the
smallest radii very well. They cannot take anisotropy into account, or the preference to
deplete eccentric orbits near the SMBH.

Owing to the computational advantages of the FP simulations, [O’Leary and Loeb, 2012]
use them to extend the results to more massive SMBHs. The number of stars as a function
of time is shown in Figure 3.6, which shows that for heavier SMBHs the mass loss is less
significant. Finally, they note that setting the parameter χ ≳ 5 greatly increases mass
loss, and note that this could represent a cluster with a high concentration of smBHs.

3.3.3 Our models

We base our simulations on the FP equation as described in the previous section. How-
ever, we will use an adapted version, as derived in [Vasiliev, 2017]. The argument of the
distribution function is changed to be the phase volume, instead of the energy: this is the
volume in phase space enclosed by the energy hypersurface. There are advantages to this
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Figure 3.6: Number of stars in a HCSC as a function of time, for different values of M•.
The results are obtained with the FP equation (3.18) including the additional sink terms
(3.24) and (3.25). Figure taken from [O’Leary and Loeb, 2012]

approach, such as a simplified recomputation of the gravitational potential. The imple-
mentation is made public in the PhaseFlow code, included in the larger AGAMA library for
galaxy modelling [Vasiliev, 2019].

The PhaseFlow code is capable of handling multiple-component system, a central black
hole, loss-cone effects and star formation. However, it does not include a sink term for
resonant relaxation (3.24) or strong encounters (3.25). The latter is left out as it seems
that the effect is small, e.g. because it is suppressed by the Coulomb logarithm (i.e. by a
factor of ∼ 10%). Absence of the former is puzzling at first, especially because [O’Leary
and Loeb, 2012] found that it needs to be included in order to match their N -body simula-
tions. However, recent works seem to suggest that resonant relaxation is counteracted by
relativistic precession of orbits [Alexander, 2017]. At the moment, it is unclear whether
this sink term should be included or not9: it is not present in the current of PhaseFlow,
however.

The model we ended up using is the following. We model a SMBH surrounded by a
population of stars, according to the post-kick results from [Merritt et al., 2009]. We fix
2 quantities out of {M•, Vk,Mb}, and use (3.10) to determine the third one. We then
model the stellar population as a population of Mb/M⊙ stars of equal mass m∗ = 1M⊙,

9Relativistic precession is included in the N -body simulations of [O’Leary and Loeb, 2012], and did
not seem to make a big difference. Therefore, it was not included in their FP simulations either. Overall,
it remains an open question whether resonant relaxation should be included or not. We thank dr. Eugene
Vasiliev and dr. Nicholas Stone for their input and opinion on this matter.
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distributed along a Dehnen profile (3.5), with γ = 1.75, as expected for the Bahcall-Wolf
cusp. The scale radius for the Dehnen profile is fixed as rD = 2rk, and the tidal radius
(3.11) is used as the radius at which a star is captured10 by the central SMBH. We then
include different models for a population of smBHs, and evolve this initial setup for ∼ 10
Gyr to see the effects of the smBH population.

To model the smBH component, we need to specify similar parameters as we did for
the stellar component. We also assign a Dehnen profile to the smBH component, and
investigate the influence of the exponent: perhaps the heavier smBH population has
already partially segregated towards the center, with possibly a steeper distribution. This
is expected when the population is already relatively old before the kick. Similarly, we also
investigate the influence of the scale radius of the Dehnen profile, as this could potentially
be smaller for the smBH component than it is for the stellar component. Contrary to the
stellar component, the capture radius used in the program is

8GM•

c2
≈ 3.8 · 10−8

(
M•

105M⊙

)
pc (3.26)

for black holes. Aside from these parameters, we mostly focus on the influence of changing
the number and mass of the smBHs.

Note that we made the crude approximation that all the stars have mass equal to 1M⊙.
This is because we will evolve the cluster on a timescale that is longer than the lifetime of
more massive stars. Therefore, we assume that very massive stars have already exploded,
giving rise to the smBH population. Stars that don’t give rise to BHs form WDs or NSs,
which are also on the order of ∼ 1M⊙. The reason for this long evolution time is that
we expect HCSCs in the Milky Way to be old, given the fact that major mergers in its
formation happened ≳ 8 Gyr ago [Sotillo-Ramos et al., 2022]. Of course, this is still an
approximation, and a detailed simulation would include stars of all masses, and track
their evolution.

3.4 Results

In this section, we summarize some general results obtained for a fiducial HCSC, by ex-
ploring the possible parameter space for the smBH population. Afterwards, we discuss
specific models with the goal of resembling some specific observational candidates in Sec.
3.5. In this first treatment, we are mostly interested in the projected half-light radius
(pHLR) of the final stellar distribution and the number of stars remaining, because these
can be compared to existing measurements.

The output of PhaseFlow gives us the enclosed mass as function of the radius. We can thus
extract the radius within which half of the total mass is contained, which is approximately
equal to the half-light radius as all the stars have the same mass. However, to make

10When a star is captured by the SMBH, 1% of its mass is added to the SMBH mass. Naively, tidal
disruption events would contribute about 50% of the stellar mass to the SMBH. We have checked that
changing this parameter does not influence the final resutls significantly.
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contact with observations in the next section, we would like to know the projected half-
light radius : this is the radius of the circle on the sky that contains half the light. This
means we need to project the resulting mass distribution onto two dimensions. Denote the
projected radius with R, and the spherical radius with r. The contained mass as function
of the spherical radius is denoted with M3(r), and the projected mass as M2(R). Now,
the projected mass within a radius R is equal to the sum of the mass within a sphere of
radius r = R and the contributions from higher spherical radii that are ”in front of” and
”behind” this sphere. So, we find that

M2(< R) =M3(< R) +

ˆ ∞

R

dM

dr
· Ω(r)

4π
dr .

In this expression, Ω(r) denotes the solid angle corresponding to the part of the sphere
with radius r that is either in front of or behind the sphere with radius R. Taking θ = 0
to point in our direction, some trigonometry tells us that

Ω(r) = 2 · 2π
ˆ θ∗(r)

0

sin θdθ , (3.27)

where sin θ∗(r) = R
r
, and the factor 2π comes from the azimuthal angle ϕ. Working out

the integral gives us the result

M2(< R) =M3(< R) +

ˆ ∞

R

dM

dr
·

1−

√
1−

(
R

r

)2
 dr . (3.28)

In practice, we discretize the second integral and use the output of PhaseFlow. It is clear
that the pHLR will always be smaller than the spherical half-light radius. In all of the
cases we considered, they are of the same order of magnitude, however. In what follows,
we work with the pHLR, which we denote with reff.

We start from a recoiling SMBH with M• = 105M⊙ and Vk = 325 km s−1. According
to (3.1), this implies rk = 4.1 · 10−3 pc. Furthermore, equations (3.3) and (3.16) give
σ ≈ 51.5 km s−1 and σobs ≈ 100 km/s. The bound mass is determined by (3.10), and
gives us about 1000 stars of 1M⊙. The Coulomb logarithm (3.22) is ln Λ ≈ 11.4. With
respect to the smBH component, we take as a starting point a population of 20 BHs of
mass 10M⊙ each, distributed along a Dehnen profile with γ = 1.75 and rD = 10−3 pc.

Note that this is the model used to create the blue track in Figure 3.4. After 10.5 Gyr
we have reff ≈ 5 pc. For comparison, the deprojected half-light radius is ≈ 6.3 pc. The
orange track uses the same parameters for the SMBH and the stellar population, but does
not include smBHs. Recall that the driving force behind the additional expansion were
smBH binaries, as stated in Sec. 3.2.2. However, the one-dimensional FP equation cannot
account for binaries, meaning that it is interesting to see that we still find this expansion.
Clearly, there is a phase of rapid expansion in the first ∼ 1 Gyr. We find that reff ∝ t2/3,
which agrees with the results of the N -body simulations in [O’Leary and Loeb, 2012], as
discussed in Sec. 3.3.1. Figure B.4 in the Appendix shows this explicitly.
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We start by looking at the density and enclosed mass profile, shown in Figure 3.7. The
blue line represents the initial conditions, and indeed displays the Dehnen profile (3.5).
After the first Gyr, the density profile seems to have flattened within radii ∼ reff, beyond
which the density decreases steeply. Comparing this to Figure 3.2, we also find that the
density at small radii decreases with time. However, for radii ≳ 0.1 pc, we find a density
that is increased with respect to the starting time. The bottom panel in Figure 3.7 is
our version of Figure 3.5. Note that our models experience much less star loss thant the
results of [O’Leary and Loeb, 2012] predict (e.g. Figure 3.6). This is due to the absence
of the sink term (3.24), as discussed in Sec. 3.3.2. We come back to this at the end of
this section as well. All together, this shows that the HCSC has undergone significant
expansion, which was already clear from Figure 3.4.

We can compare this to the profiles of the smBH population (shown in Figure B.5 in the
Appendix). Figure 3.8 shows the density profile at the beginning and at the end of the
simulation, for both components. At t = 0 Gyr, we see that the density profiles have the
same slopes, though different scale radii: these are of course the initial conditions that we
set. Interestingly, after 10.5 Gyr, the density profiles don’t have the same slope anymore.
The density of smBHs is seen to decrease more rapidly. This suggests that the popula-
tions indeed segregate, with the heavier BH population sinking to the center. However,
in terms of the enclosed mass, the difference is not so extreme, as can be seen in Figure B.6.

Now that we have investigated some results of this base model, we discuss what happens
when changing the parameters. First of all, we start by noting that changing the exponent
of the smBH Dehnen distribution does not significantly influence the outcome. Figure
3.9 shows that the number of stars after 10.5 Gyr is approximately independent of the
exact value of γ. The variation in reff is negligible. Therefore, in what follows we will
just assume that γ = 1.75 for the smBH component; the same as for the stellar component.

Secondly, we note that the scale radius of this population does influence the pHLR to
some extent. This can be seen in Figure 3.10. We already mentioned before that we
expect the scale radius to be similar to or smaller than that of the stellar population, but
we investigate the influence of larger scale radii as well. We see that there seems to be
an optimal value for the scale radius, that best enhances the growth of the HCSC. This
appears to be when the scale radius of both populations is similar. A possible explanation
could be that a configuration where both populations have a similar scale radius implies
that the heavier component can transfer a lot of orbital energy to the lighter component
in an efficient way. This could then boost the expansion in a maximal way. In what
follows, we therefore set both scale radii equal.

We mentioned in Sec. 3.3.2 that the Coulomb logarithm influences the end result as well.
This is expected, as (3.18) works with the dimensionless time τ = t/tR, where tR is the
relaxation time (3.17), which is inversely proportional to lnΛ. Therefore, increasing lnΛ
forces the system to evolve faster. The effect of changing the Coulomb logarithm is shown
in Figure 3.11, for two arbitrarily chosen values of lnΛ in addition to the reference value
(3.22).

We now turn to the influence of the number and mass of the smBHs. By exploring this
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Figure 3.7: Density and enclosed mass profile of the stellar population at different times,
for M• = 105M⊙, Vk = 325 km s−1 and a population of 20 smBHs of 10M⊙ each. The
dashed vertical lines correspond to reff at the different timesteps, with increasing values
for increasing time (see Figure 3.4).
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Figure 3.8: Comparison of the density profile of the stellar and smBH populations, at the
start and at the end of the simulation. Initially, they both display the Dehnen profile, as
set by the initial conditions. After 10.5 Gyr, the smBHs are concentrated more towards
the center, relative to the stellar population. This is caused by gravitational settling.

Figure 3.9: Number of stars remaining in a HCSC with M• = 105M⊙, Vk = 325 km s−1,
an inital stellar population of 1000 solar-mass stars and an initial smBH population of
20×10M⊙. The first timestep, at t = 0 Gyr, is not shown: N = 1000 for all three models
and the difference between them is more clear on this scale. The number is determined
by rounding of the total mass in the cluster, to obtain an integer. The exponent γ of the
Dehnen profile of the smBH population is seen to have very little influence.
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Figure 3.10: Influence of the scale radius in the Dehnen profile of the smBH component
on reff and the number of stars. The scale radius of the stellar population is ∼ 8.2 · 10−3

pc, and we do not expect the scale radius of the smBH distribution to be much larger.
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Figure 3.11: Influence of changing the Coulomb logarithm on the effective radius of a
HCSC, for our base model. The reference value given by (3.22) is lnΛ ≈ 11.4.

parameter space (see Figure 3.12), we find an approximate scaling relation:

log reff ≈ β0 + βN logNsmBH + βM logMsmBH . (3.29)

Exploring the parameter space, we restrict ourselves to MsmBH ≳ 5M⊙, as observations of
BHs with lower mass remain absent [Casares and Jonker, 2014, Collaboration et al., 2022].
Furthermore, we also take NsmBH ≥ 2, to at least have multiple smBHs. We perform an
ordinary least squares (OLS) fit11 of this hyperplane in the 3-dimensional log-parameter
space and find that after evolving the system12 for 10.5 Gyr

β ≡ (β0, βN , βM)

= (−0.66± 0.02, 0.321± 0.008, 0.952± 0.013) . (3.30)

The (adjusted) R2 of the fit is 0.993 (0.992), indicating a very good fit. All the fit
parameters are significantly different from zero. This means that, at least locally,

reff ≈ 5.1

(
NsmBH

20

)0.321(
MsmBH

10

)0.95

pc . (3.31)

Figure (3.13) shows an illustration of the fit.

11We have also performed an orthogonal distance regression (ODR) to fit the hyperplane, which
gave results that are fully consistent. ODR minimizes the orthogonal distance between the points and
the hyperplane, whereas an OLS fit minimizes the distance along one axis. For illustration, the ODR
counterpart of (3.30) is β = (−0.66± 0.02, 0.322± 0.008, 0.955± 0.013).

12The values of the constants depend on time, since the pHLR does as well. However, since we found
that reff ∝ t2/3, we expect only the constant β0 to depend on time. This is indeed the case, but the other
constants still depend on the rest of the model: indeed, we find different values for these constants in
Sec. 3.5. We focus on the scaling relation at the end of our simulation.
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Figure 3.12: Parameter space for the hyperplane (3.29) fit with results (3.30) on a (left)
logartihmic and (right) linear scale. The parameter space contains points such that the
total mass of the smBH population is between ∼ 20M⊙ and ∼ 500M⊙.

Figure 3.13: Illustration of the hyperplane (3.29) with parameters (3.30) in the logarithmic
parameter space. The black dots are the points in the parameter space used to determine
the fit (see Figure 3.12).
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Finally, we have a look at the velocity dispersion. For our base model, the velocity
dispersion at the start of the simulation is O(100) km s−1, as expected from (3.16).
However, at the end of the simulation, the three-dimensional velocity dispersion13 at
the pHLR is ∼ 5 km s−1, which is the order of magnitude that is expected from (2.1).
This shows however that, after the significant expansion that results from ∼ 10 Gyr of
evolution, the velocity dispersion decreases significantly. This velocity dispersion could be
increased if we find a model with a more massive SMBH, such that the Keplerian velocity
is increased at ∼ 5 pc. We leave this for future work.

Revisiting the extra sink terms

As mentioned in 3.3.2, [O’Leary and Loeb, 2012] found that the resonant relaxation
(3.24) significantly influenced the outcome of their simulations. This term is not included
in PhaseFlow, however. To assess its importance, we take an alternative approach14.
Resonant relaxation drives the TDE rate up, and to mimick this effect we increase the
tidal radius (3.11). The tidal radius for a 105M⊙ SMBH and a Sun-like star is ∼ 10−6 pc.
The pHLR of the stellar population is only mildly influenced if we increase the tidal radius:
see Figure 3.14. On the other hand, the number of stars is significantly lowered, which is
to be expected if we increase the tidal radius. However, if we now also multiply the smBH
capture radius (3.26) by the same factors15, we find that the pHLR is lowered by a larger
factor. It also further decreases the number of surviving stars, but not as much as the
increase of the tidal radius. While increasing these capture radii, we effectively increase
the loss-cone in order to mimick the enhanced TDE rate that the resonant relaxation sink
would bring. We leave it to future work to figure out what factor would mimick this sink
well, in order to assess the importance of the latter. Note that, even when multiplying
the capture radii with a factor 100, the mass loss is not as severe as [O’Leary and Loeb,
2012] found (see Figure 3.6.)

3.5 Modelling observational candidates

The previous section presented some general results based on an arbitrarily chosen model.
In this section, we have a look at some faint stellar clusters that according to the argument
in Sec. 3.2.2 could potentially be these elusive HCSCs. We look for a models that agree
with observations, and explore what part of the parameter space the smBH population
could cover using the scaling relation (3.29), with parameters that correspond to the new
models. As we are considering satellites of the Milky Way, we will restrict to recoil kicks
below its escape velocity, which is on the order of 600 km s−1 [Kafle et al., 2014]. Further-
more, Sgr A∗, the SMBH at the center of the Galaxy, has a mass on the order of 106M⊙.
We don’t expect the SMBHs in HCSCs to be more massive than this - as hierarchical
formation suggests that the final remnant SMBH at the center of the Galaxy is one of the

13PhaseFlow also returns the two-dimensional projected velocity dispersion. This is of the same order
of magnitude as the three-dimensional velocity dispersion, and we focus on the latter for now.

14We thank dr. Eugene Vasiliev for this suggestion.
15Note that smBHs don’t get tidally disrupted by the SMBH, but rather captured as a whole. To

mimick the effect of an increased loss cone, it makes sense to multiply the capture radii of both components
with the same factor.
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Figure 3.14: Influence of changing the capture radii on (top) reff and (bottom) the number
of stars N⋆. The blue line corresponds to our base model, and the orange and green
lines to the same model with the tidal radius (3.11) multiplied with a factor 10 and 100,
respectively. The red and purple lines also multiply the smBH capture radius (3.26) with
the same factor. Increasing the capture radii is a way to increase the loss cone, in order
to mimick the effect of an additional sink term, like the one due to resonant relaxation
(3.24).
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heaviest formed - and will therefore restrict to masses below this.

It should be noted that the results we obtain in this section should be considered as
order-of-magnitude predictions, as many assumptions go into the relations that we use.
However, this section should give a good idea of the kind of HCSCs that we could expect,
if these faint halo clusters turn out to be the consequence of recoiling SMBHs.

3.5.1 DELVE 1

The first HCSC target that we consider is DELVE 1 [Mau et al., 2020]. It has an effective
radius reff = 5.4+1.5

−1.1 pc and an estimated total stellar mass M⋆ = 144+24
−27M⊙. This mass

estimate is based on fitting an isochrone to the observed color-magnitude diagram of the
cluster, which in combination with an initial-mass function (IMF) gives an estimate of
the total stellar mass, including the portion that we don’t see. This method is of course
subject to uncertainties, as the errors on the estimate indicate. The cluster is estimated
to have an age equal to τ = 12.5+1.0

−0.7 Gyr.

We model this system with the aim to get the correct pHLR and stellar mass - recall
that our models assume all stars have mass 1M⊙ - after 12.5 Gyr. We consider different
possible values for the recoil velocity, and use16 (3.10) to estimate M•. This relation
contains the initial bound mass Mb, which we take above the target stellar mass. In the
end, we then check that the remaining number of stars is as desired.

Kick Vk = 400 km s−1

Starting from a kick velocity of 400 km s−1, a SMBH of mass 4 · 104M⊙ leads to Mb ≈
159M⊙. We explore a parameter space for NsmBH ≳ 2 and MsmBH ≳ 5M⊙ such that the
total mass in smBHs is smaller than M∗. We fit the hyperplane (3.29) to find

β = (−0.735± 0.016, 0.439± 0.009, 1.095± 0.011) . (3.32)

The fit has R2 = 0.997, indicating once again a very good fit. For every model that we
explored in this parameter space, the remaining number of stars is between 136 and 140.
This is perfectly acceptable, given the target M∗.

We use this hyperplane to determine the parameter space for the smBH population that
give rises to a pHLR within the observational bounds. This region can be seen in Figure
3.15, and should give a rough idea of what we can expect for the smBH population if
DELVE 1 is a HCSC with kick velocity on the order of 400 km s−1.

To estimate the velocity dispersion at the pHLR, we take a model with 10 smBHs of
9M⊙, which according to (3.32) has the desired pHLR. The predicted three-dimensional
velocity dispersion at the pHLR is ∼ 2.9 km s−1. We have checked that this value is the
same if we take a model in a different part of the parameter space.17

16Recall that we made a comment in footnote 2, saying we obtained a different factor for (3.9) and
(3.10). It turns out that using these new factors, we don’t find models in the desired parameter space of
kicks and SMBH masses.

17We have checked 25× 6M⊙ and 5× 12M⊙ smBHs.
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Figure 3.15: Part of the parameter space for the smBH population around a 4 · 104M⊙
SMBH with Vk = 400 km s−1 that has a pHLR within the observational bounds of
DELVE 1, i.e. reff = 5.4+1.5

−1.1 pc. All models have been evolved for 12.5 Gyr, and have a
final number of stars that falls within the observational bounds as well. The dashed lines
indicate ”limits of plausibility”, i.e. we want multiple smBHs, with masses above ∼ 5M⊙.

Kick Vk = 500 km/s

We repeat this analysis for a kick velocity of 500 km s−1. A SMBH of mass 5.8 · 104M⊙
leads to Mb ≈ 155M⊙. The fit of the hyperplane (3.29) now corresponds to

β = (−0.893± 0.017, 0.439± 0.008, 1.094± 0.012) , (3.33)

and the fit has R2 = 0.998. Note how the constants βN , βM in (3.32) and (3.33) agree,
whereas the values for β0 differ.

In all cases considered, the remaining number of stars is between 132 and 136, which is
acceptable, though a bit on the low end. However, this can be attributed to the fact that
we started with 4 stars less as well, compared to the Vk = 400 km s−1 case. The region
of the parameter space corresponding to the target pHLR can be seen in Figure 3.16.

The estimated three-dimensional velocity dispersion is σ ≈ 3.5 km s−1, based on a model
with 15× 10M⊙ smBHs.

Lower kick velocities

For lower kick velocities to retain a similar amount of stars, the SMBH mass needs to be
smaller as well. Therefore, we could make more plots similar to Figures 3.15 and 3.16,
where the parameter space would get more restricted to the lower left corner (smaller total
smBH masses) as the kick velocity decreases. At some point, smBHs would be redundant
in order to obtain the target pHLR. As an example, a SMBH with M• ≈ 900M⊙ and
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Figure 3.16: Similar to Figure 3.15, but with M• = 5.8 · 104M⊙ and Vk = 500 km s−1.
The region is seen to extend towards larger NsmBH. The green line crosses the horizontal
dashed line at NsmBH ∼ 100. However, we choose to not extend it further, as it falls
outside the parameter region that we explored, and is therefore an extrapolation of our
fit. Furthermore, this extended region would correspond to the population of smBHs
having more mass in total than the stellar population. This is not impossible, but falls
beyond the scope of this research.
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a kick velocity on the order of 160 km s−1 result in a HCSC that, after 12.5 Gyr, has
reff ∼ 5 pc and about 150 M⊙ in stars remaining, without any smBH component. This
model predicts a three-dimensional velocity dispersion σ ≈ 1.4 km s−1.

Conclusion

We see that we can explain the observational properties of DELVE 1 with a variety of
models that differ in SMBH mass, recoil kick velocity and smBH population. The different
models predict different values for the velocity dispersion. Therefore, a measurement of
the latter could possibly rule out a subset of these models. Furthermore, a GC with these
observed properties is expected to have a velocity dispersion ≲ 0.2 km s−1, meaning that
if the velocity dispersion can be observed to an accuracy of ∼ 1 km s−1 we could rule out
one of the possible natures of this cluster. A proposal has been submitted by prof. Jonker
to measure this velocity dispersion, though this assumed that a less accurate measurement
was needed, since σ ≈ 13 km s−1 was assumed.

3.5.2 AM4

We repeat the analysis for the cluster AM4 [Hamren et al., 2013, Muñoz et al., 2018]. It
is larger than DELVE 1, with reff = 7.3 ± 1.4 pc. The age of this cluster is estimated
to be > 13 Gyr. However, no extrapolated mass estimate is given for this cluster. The
authors do assemble a color-magnitude diagram with 435 stars, however. As the age of
the cluster is longer than the main-sequence lifetime of the Sun, all the stars that remain
should have masses ≲ 1M⊙. We will therefore use a stellar mass of 435M⊙ as target
stellar mass, which likely underestimates the true mass though.

We only illustrate the parameter space for a recoil kick Vk = 500 km s−1. We have
M• = 1.3 · 105M⊙ and Mb = 498M⊙. The fit of the hyperplane (3.29) gives parameters

β = (−1.232± 0.016, 0.487± 0.005, 1.153± 0.008) , (3.34)

and the (adjusted) R2 is 0.999. The remaining number of stars for all models is between
440 and 450, which is a bit higher than our target. This is not a problem, as we likely
underestimated the stellar mass. The region of the parameter space corresponding to the
target pHLR can be seen in Figure 3.17.

The estimated three-dimensional velocity dispersion is σ ≈ 4.5 km s−1, which is higher
than what we found for DELVE 1, due to the more massive SMBH.
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Figure 3.17: Part of the parameter space for the smBH population around a 1.3 · 105M⊙
SMBH with Vk = 500 km s−1 that has a pHLR within the observational bounds of AM4,
i.e. reff = 7.3± 1.4 pc. All models have been evolved for 13 Gyr, and have a final number
of stars that falls within the observational bounds as well. The dashed lines indicate
”limits of plausibility”, i.e. we want multiple smBHs, with masses above ∼ 5M⊙. The
allowed parameter space could be extended even further to larger numbers of black holes,
but we did not explore this parameter space for the fittin procedure, as the total smBH
mass would get much larger than the stellar mass. This is not impossible, but beyond the
scope of this work.



Chapter 4

Conclusion and Outlook

The future space-based gravitational-wave detector LISA will provide scientists with a
cornucopia of data that will enable breakthroughs in different fields. The goals of the
LISA mission are summarized in 8 different science objectives, and in this thesis we
have explored two topics that relate to these objectives. The first topic covered the
gravitational-wave background due to extragalactic white dwarf binaries, which falls under
the aim of detecting an astrophysical background. One of the other science objectives aims
to reproduce the formation history of supermassive black holes, and we have looked into
the putative hypercompact stellar clusters that should form as a consequence of their
mergers. Below, we summarize our main findings, and provide possible future lines of
work.

The gravitational-wave background from extragalactic white-dwarf binaries

We have revisited earlier work by [Farmer and Phinney, 2003], who modelled the gravitational-
wave background sourced by extragalactic white-dwarf binaries. We have compared their
results to the extrapolated current best estimates for the background from coalescing black
hole and neutron star binaries, obtained by the LVK collaboration in the high-frequency
regime [LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration
et al., 2021]. The conclusion is that the WD component is likely dominant over the other
ones. We have discussed a few other works that put forward a similar hypothesis, and
supported it further with a rough order-of-magnitude argument. This poses a problem,
as the different components are hard to disentangle. For all of them, the dimensionless
energy density Ω follows the same frequency dependence, Ω ∝ f 2/3, throughout most of
the LISA band.

We have taken two approaches to model the background, one of which we normalized
to the results of [Farmer and Phinney, 2003]. Our second approach provided our own
independent prediction for the amplitude of the GWB, which is about a factor 5 larger
at 1 mHz than the latter.

The main features of our GWB are in agreement with what [Farmer and Phinney, 2003]
found. Below ∼ 0.1 mHz, Ω is steeply increasing according to a power law with exponent
≈ 10/3. Following this steep decrease, there is a transition region before the background
starts to follow the expected Ω ∝ f 2/3 power law. This is the case until the peak, at
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around ∼ 10 mHz, after which Ω decreases again due to the merging of the binaries. The
background that we simulated exhibited a slower decay after the peak, compared to the
results of [Farmer and Phinney, 2003].

We have considered explorative alternative models for the cosmic star formation history,
to investigate its influence on the total background. We found that the variation in the
LISA band was very mild (see Table 2.2 and Figure 2.19), in agreement with the findings
of [Farmer and Phinney, 2003]. However, given the larger amplitude of our background,
we found that disentangling the WD component in the LISA band could be feasible, as
the peak is now better visible in the LISA band. This peak must be due to the WD com-
ponent, as the other components are expected to follow Ω ∝ f 2/3 until the LVK frequency
band.

Some parts of our work here can still be improved on. For now, we have just based
the error on our prediction on the relative error found in [Farmer and Phinney, 2003].
However, a more accurate estimate of the error could be made by considering realistic
alternative WD populations, as done in the original source. Furthermore, an error due
to the uncertainty on the SFH could be estimated by considering variations of the SFH
within observational bounds, although we don’t expect that this will impact the GWB a
lot. Finally, it could be interesting to investigate whether data analysis pipelines for the
GWB could actually extract the peak due to WD mergers around 10 mHz from data, i.e.
whether the peak is actually detectable. This would provide good insight on how realistic
it is to disentangle the WD component from the others.

Hypercompact stellar clusters

We went over existing literature to construct initial conditions for HCSCs, which we then
evolved using the Fokker-Planck solver PhaseFlow. We have investigated the influence of
a smBH population on the cluster’s properties after a Hubble time. For a fixed SMBH
mass and stellar population, the addition of a smBH component causes the cluster to
reach larger sizes, which we characterized by the half-light radius. We looked at the im-
portance of the different parameters of the smBH population, and found the approximate
scaling relation (3.29).

The additional expansion caused by a smBH population means that some faint clusters in
the Milky Way halo are actually feasible candidates for these (so far) undetected systems.
We modelled two of these candidates, DELVE 1 and AM4, and used our scaling relation
(3.29) to delineate a part in the parameter space of smBH mass and number that agrees
with observational properties of the candidates. Depending on the kick velocity that we
used as input for the model, we found different predictions for the velocity dispersion
of these clusters. Measuring this velocity dispersion, for which proposals are submitted,
could then distinguish between different models from the collection that we constructed.
Furthermore, as these velocity dispersions are larger than the typical values for globular
clusters of similar size, an accurate measurement of the velocity dispersion could provide
conclusive evidence for the nature of these faint clusters.

One possible line of research that this work could benefit from, is to provide further clar-
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ity on whether resonant relaxation (3.24) should be included in the model or not. As
explained, it is thought that relativistic precession counteracts this effect. However, it is
not fully clear yet why the inclusion of this sink term was necessary to match the results of
the N -body and Fokker-Planck simulations performed in [O’Leary and Loeb, 2012]. This
has a large effect on the mass loss that the cluster experiences, which alters the models
significantly.

Additionally, it would be interesting to perform full N -body simulations of recoiling
SMBHs, with both a stellar population and smBH population bound to them. This
could also provide further insights on the amount of mass loss that the stellar population
actually experiences. Finally, we note that it could be fruitful to estimate realistic values
of the recoil velocity for the faint halo clusters, based on their position in the halo. This
would further constrain the models, since we now considered a wide range of possible kick
velocities.
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Appendix A

General Relativity

This Appendix provides a bit of background on general relativity and the Einstein equa-
tions (A.4). Readers who are not very familiar with Einstein’s theory should consult a
complete and more pedagogical introduction, e.g. [Carroll, 2019, Hartle, 2003, Mayerson
et al., 2019]. This section does not treat the beautiful physics behind special relativity
and the equivalence principle, nor does it provide a full explanation of tensor calculus; it
simply presents the necessary formulas. The majority of this section is based on [Carroll,
2019].

We are used to thinking of space and time as separate concepts. One of the essential
conceptual steps in understanding GR is to drop this point of view, and to start thinking
of space and time together: spacetime is a four-dimensional construct that encompasses
both, and puts them on a more equal footing.

The central object of interest in GR is the metric tensor gµν , which describes the space-
time of interest. Through this coupling of space and time, infinitely many spacetimes are
possible, each with distinct properties and uses. Among these possibilities are the black
hole metrics, which are most relevant for this project. However, many other spacetimes
exist, with some famous ones being (anti-)de Sitter space and FLRW metrics.

The indices µ, ν can take the values 0,1,2,3. The first is associated with the time-like
dimension, and the others correspond to the spatial dimensions. It is important whether
indices are written up or down. For example, the metric with indices down, gµν , is
called the covariant metric, whereas the metric with upper indices, gµν is called the
contravariant metric. Similarly, any covariant four-vector Aµ also has a contravariant
counterpart Aµ. The metric provides the correspondence between both, as

Aµ = gµνAν .

A few comments are appropriate here. First of all, the name that we give to an index, i.e.
µ, ν or even α, is not important. Secondly, the formula above makes use of the Einstein
summation convention, which dictates that repeated indices on the same side of the
equality are summed over (also referred to as contracting the indices). Therefore, the
expression above should be interpreted as

Aµ = gµ0A0 + gµ1A1 + gµ2A2 + gµ3A3 .
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This summation convention is very useful, to avoid explicitly writing all the summations
that appear in formulas. The index µ is called a free index, as it appears in both sides
of the equation without being summed over. Often, instead of using the numbers 0,1,2,3
the coordinates to which they refer are used as indices. Explicitly, in the case of spherical
coordinates (x0, x1, x2, x3) ≡ (t, r, θ, ϕ), the indices are often written as e.g. gtt ≡ g00.
More rules apply to these indices, but they are not treated here.

The metric appears in the formula for the line-element (which is sometimes also referred
to as the metric):

ds2 = gµν(x)dx
µdxν . (A.1)

The xµ are called the coordinates, and the metric can depend on them. Coordinates
are not determined uniquely, and changing them is possible if the metric is transformed
along with them. This line-element determines the distance between points in spacetime.
Keeping the summation convention in mind, the expression (A.1) should be interpreted
as

ds2 =
3∑

µ,ν=0

gµν(x)dx
µdxν = g00(x)dx

0dx0 + g10(x)dx
1dx0 + . . .

highlighting the merit of the summation convention once again. Furthermore, it should
be noted that the metric has the special property that it is symmetric, meaning that
gµν = gνµ. Arguably, the most important metric is that of flat spacetime. This is the
metric in the absence of any mass, energy or black hole. It is often referred to as the
Minkowski metric, and is in its simplest form written as

ds2 = −c2dt2 + dx2 + dy2 + dz2 . (A.2)

The constant c is the speed of light, and the coordinate t corresponds to the time. The
other three coordinates can be thought of as Cartesian coordinates in a three-dimensional
space. It is often written in terms of spherical coordinates:

ds2 = −c2dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (A.3)

This may look different, but describes the exact same flat spacetime that is described by
(A.2).

In principle one could invent any metric, but the ”allowed” metrics in GR are the ones
that solve the Einstein equations

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (A.4)

This equation features the Ricci tensor Rµν and scalar R on the left-hand side, which
depend on the metric in a complex way. Therefore, the left-hand side describes the
geometry - and more specifically, the curvature - of the spacetime. The right-hand side
contains the energy-momentum tensor Tµν , which depends on the matter and energy
content that is present in the spacetime. This equation has a beautiful interpretation,
which can be stated as
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Matter and energy curve spacetime.

The equation (A.4) reduces to Newton’s laws in the non-relativistic limit, where masses are
small and speeds are small compared to the speed of light c. The Einstein equations in
vacuum, which correspond to setting the energy-momentum tensor Tµν to zero in (A.4),
is the starting point when studying black holes or gravitational waves. Contracting the
indices on the left-hand side shows that these are equivalent to

Rµν = 0 . (A.5)

Given the central role of the speed of light in the theory, it appears in almost every
equation. In order to avoid writing it all the time, which would render equations less
transparent, physicists have thought of a way to get rid of all the c’s. This is done by
switching to natural units. Essentially, this is similar to switching from SI-units to e.g.
cgs-units. The result is that we can replace every instance of c by 1. As an example,
Einstein’s famous equation for the rest energy E of a particle with mass m, given by
E = mc2, would be written as E = m in natural units. There is a consistent way of
recovering the original equations containing c from the ones expressed in natural units,
but we will not go into these details here. To add even more complexity, the gravitational
constant G can also be set to 1 along with c in a consistent way. This allows us to write
equation (A.4) in natural units as

Rµν −
1

2
Rgµν = 8πTµν .

While the benefits of these natural units may not immediately be clear from these simple
examples, the simplification they provide in more complicated formulas is significant.





Appendix B

Additional Figures

This Appendix provides some additional figures that don’t belong in the main text.

B.1 Chapter 2

Figure B.1 shows estimates for the different components of the background sourced by
coalescing compact binaries, based on extrapolations of values in [Collaboration et al.,
2022, Farmer and Phinney, 2003]. Figures B.2 and B.3 shows the contributions of different
redshift bins to 10 different frequency bins, for the alternative SFRs (2.50) - (2.52).
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Figure B.1: Comparison of the different components that make up the GWB due to
coalescing compact binaries, described by 2.15. The dashed black line describes the
extrapolated upper limit on the background as derived in [LIGO Scientific Collaboration,
Virgo Collaboration, and KAGRA Collaboration et al., 2021]. The solid lines and shaded
regions are the estimates for the backgrounds generated by binary WDs, BHs, NSs and
BH-NS binaries [Collaboration et al., 2022, Farmer and Phinney, 2003]. The dot-dash
line is a parabola that approximates the sensity curve of the planned LISA mission, for
comparison.
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Figure B.2: Contribution of the different redshift bins at different frequencies grouped
in 10 frequency bins, for the alternative SFHs (2.50) - (2.51). The size of the rectangle
represents the relative contribution. The indicative redshift indicated in the legend is in
the middle of the bin, and all have width 0.8.
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Figure B.3: Contribution of the different redshift bins at different frequencies grouped in
10 frequency bins, for the alternative SFH (2.52). The size of the rectangle represents the
relative contribution. The indicative redshift indicated in the legend is in the middle of
the bin, and all have width 0.8.

B.2 Chapter 3

Figure B.4 shows that the effective radius reff grows as reff ∝ t2/3. The dashed lines are
drawn according to

0.008 + A · t2/3 , (B.1)

where A = 1.04 and A = 0.3 for the model with and without smBHs, respectively. These
are not the results of a fitting procedure, but should be considered indicative. Addi-
tionally, the model with smBHs is evolved for the first Gyr separately as well, to further
confirm the functional behaviour, with respect to Figure 3.4.

Figure B.5 shows the density and enclosed mass profile for the smBH component of our
base model, described in Sec. 3.4. Figure B.6 shows a comparison of the enclosed mass
profile between the stellar and smBH component.
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Figure B.4: Figure 3.4, but the dashed lines are now drawn according to reff ∝ t2/3. The
precise values are given by (B.1) with A = 1.04 and A = 0.3,
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Figure B.5: Density and enclosed mass profile of the smBH population at different times,
for M• = 105M⊙, Vk = 325 km s−1 and a population of 20 smBHs of 10M⊙ each. The
dashed vertical lines correspond to reff at the different timesteps, with increasing values
for increasing time (see Figure 3.4).



B.2. Chapter 3 107

Figure B.6: Comparison of the enclosed mass profile of the stellar and smBH populations,
at the start and at the end of the simulation. Initially, they both display the Dehnen
profile, as set by the initial conditions. After 10.5 Gyr, the smBHs are concentrated
slightly more towards the center, relative to the stellar population. This can be seen from
the difference in slope.
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